首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.  相似文献   

2.
3.
The current classification of the Malagasy-Comoroan geckos of the genus Geckolepis recognizes three valid species and is based on morphological differences only. Species allocation of individuals is difficult, mainly because of the insufficiently known degree of variation and the frequent partial loss of the integument in preserved specimens. Here we study Geckolepis specimens from almost their entire known range. We combine molecular and morphological data to estimate species richness in the genus, and to assess the taxonomic validity of the morphological differences proposed. Analyses of mitochondrial (12S, ND4) and nuclear (RAG1, CMOS) gene sequences support three major clades in addition to the morphologically distinct G. polylepis (included for 12S only), and the presence of various divergent lineages within these clades, some occurring in sympatry. Among lineages, the external morphology seems to be comparatively conservative, and differences are faint in many cases. For each major lineage, we summarize the most diagnostic morphological characters that distinguish it from other lineages. The combined molecular and morphological data strongly indicate the presence of highly divergent lineages, three of which are tentatively referred to the names Geckolepis maculata, G. polylepis and G. typica, whereas three other major lineages are considered Confirmed Candidate Species. Among the remaining lineages, differentiation is shallower, and these may qualify for Deep Conspecific Lineages. In conclusion, our analysis provides evidence for an underestimation of species richness in the genus and a complex evolutionary history, not reflected by current Geckolepis species-level taxonomy.  相似文献   

4.
In the present study, the genetic polymorphism of the Chionomys genus was examined based on the sequencing of the mitochondrial cytb gene and two nuclear exons, including GHR exon 10 and BRCA1 exon 11. The distinct subdivision of the genus of snow voles into five lineages, including Ch. nivalis, Ch. gud, Ch. roberti, and Ch. aff. nivalis from Turkey, as well as Ch. aff. gud from Turkey, was demonstrated. The branching order in the trees constructed based on the data for different genes was ambiguous, which was probably the consequence of recent and rapid radiation of the major lineages from a common ancestor. However, the data of the mitochondrial and nuclear gene analyses definitely indicated that the genetic and taxonomic diversity of the Chionomys genus was higher than it was expected before. The genetic divergence of some populations was so deep that they probably deserved the statuses of independent species. Despite that the range of the European snow vole Ch. nivalis is larger and more fragmented than the Gudaur vole Ch. gud, the latter species with its relatively small range, which is limited to the Caucasian and Pontic Mountains, was characterized by a similarly expressed phylogenetic structure. At the same time, Robert’s vole Ch. roberti was less structured genetically than the first two species. The data obtained supported the Near Eastern, rather than the European origin of the Chionomys genus.  相似文献   

5.
The phylogenetic relationships within the Stellifer group of weakfishes (Stellifer, Odontoscion, Ophioscion, and Bairdiella) were evaluated using 2723 base pairs comprising sequences of nuclear (rhodopsin, TMO-4C4, RAG-1) and mitochondrial (16S rRNA and COI) markers obtained from specimens of nine species. Our results indicate a close relationship between Bairdiella and Odontoscion, and also that the genus Stellifer is not monophyletic, but rather that it consists of two distinct lineages, one clade containing S. microps/S. naso/S. brasiliensis and the other, S. rastrifer/S. stellifer/Stellifer sp. B, which is closer to Ophioscion than the former clade. The O. punctatissimus populations from the northern and southern Brazilian coast were also highly divergent in both nuclear (0.8% for rhodopsin and 0.9% for RAG-1) and mitochondrial sequences (2.2% for 16S rRNA and 7.3% for COI), which we conclude is consistent with the presence of two distinct species. The morphological similarities of the members of the Stellifer group is reinforced by the molecular data from both the present study and previous analyses, which have questioned the taxonomic status of the Stellifer group. If, on the one hand, the group is in fact composed of four genera (Stellifer, Ophioscion, Odontoscion, and Bairdiella), one of the two Stellifer clades should be reclassified as a new genus. However, if the close relationship and the reduced genetic divergence found within the group is confirmed in a more extensive study, including representatives of additional taxa, this, together with the morphological evidence, would support downgrading the whole group to a single genus. Obviously, these contradictory findings reinforce the need for a more systematic taxonomic revision of the Stellifer group as a whole.  相似文献   

6.
Three species of boid snakes are recognized in Madagascar, namely the genus Sanzinia (one species and two subspecies) and the genus Acrantophis (two species). In the present study, we studied the patterns of genetic variation of these species across Madagascar using a fragment of the mitochondrial 16S rRNA gene in 77 specimens. To support the phylogenetic relationships of the lineages identified, three further gene fragments (cytochrome b, 12S rRNA and c‐mos) were analyzed in a reduced but representative set of samples. The results obtained corroborate that the genus Sanzinia includes two highly divergent mitochondrial lineages that evolved independently from each other on the east versus the west side of Madagascar. Each of these lineages presents a further subdivision that separates northern from southern groups. The nuclear marker showed no variation among the Malagasy boas, indicating either very low substitution rates in this gene or relatively recent speciation events coupled with high mitochondrial substitution rates. Because the broad geographic sampling detected no admixture among haplotypic lineages within Sanzinia, it is hypothesized that these may represent distinct species. Deviant haplotypes of snakes morphologically similar to Acrantophis dumerili indicate that this taxon may be a complex of two species as well. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 640–652.  相似文献   

7.
The karyotype of Mustela kathiah was first described. Its structure is most similar to the karyotype of M. altaica, differing in the morphological peculiarities of five pairs of large chromosomes. A comparative analysis of mitochondrial genes in the species Mustela allowed us to clarify understanding of the place of M. kathiah in the system of the genus. The earlier hypothesized proximity of the species to a group of small weasels (altaica, nivalis) or to a group of South Asian species (strigidorsa, nudipes) was not confirmed. A high level of differences between M. kathiah of Vietnam and specimens from southern China in nucleotide sequences of the cytochrome b (7.7%) and ND2 (6–6.2%) genes was found. It is supposed that difference in the two gene sequences found in geographically distanced populations of M. kathiah may be adaptive.  相似文献   

8.
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling–Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling–Daba Mountains of Central China.  相似文献   

9.
To study the phylogenetic relationships, evolutionary history, and molecular systematics of firs (genus Abies), the phylogenetic reconstruction, based on nuclear multilocus markers—amplified fragment length polymorphism (AFLP)—was conducted. Using seven combinations of selective primers, 84 samples of 39 taxa were genotyped for 553 polymorphic AFLP loci. A comparison with our earlier chloroplast and mitochondrial phylogenies of the genus (in 2014) shows that the nuclear phylogeny generally is more congruent to the chloroplast tree. Most of the clades resolved by the chloroplast phylogeny were supported also in the AFLP tree. Employing the nuclear DNA-based tree, we revealed the presence of new groups and the differences in the topology of several clades. AFLP confirmed the monophyly of Asian species of section Balsamea and their sister position in relation to the American group of species of this section. As shown by the tree of chloroplast DNA, Asian species of section Balsamea do not form a monophyletic group, but belong to the clade comprising the majority of Asian species. Phylogenetically mitochondrial DNA data to a large extent are not congruent to the nuclear and chloroplast DNA trees, and are more in line with geographical distribution of species. Conflicts between nuclear and cytoplasmic phylogeny were analyzed. Taking them into account, we consider the hypothesis of a hybrid origin of particular groups of firs, including ancient hybridization in section Balsamea. A comparison of molecular data with traditional taxonomy of the genus is discussed.  相似文献   

10.
The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.  相似文献   

11.
A phylogenetic study of firs (Abies Mill.) was conducted using nucleotide sequences of several chloroplast DNA regions with a total length of 5580 bp. The analysis included 37 taxa, which represented the main evolutionary lineages of the genus, and Keteleeria davidiana. According to phylogenetic reconstruction, the Abies species were subdivided into six main groups, generally corresponding to their geographic distribution. The phylogenetic tree had three basal clades. All of these clades contained American species, and only one of them contained Eurasian species. The divergence time calibrations, based on paleobotanical data and the chloroplast DNA mutation rate estimates in Pinaceae, produced similar results. The age of diversification among the basal clades of the present-day Abies was estimated as the end of the Oligocene-beginning of Miocene. The age of the separation of Mediterranean firs from the Asian-North American branch corresponds to the Miocene. The age of diversification within the young groups of Mediterranean, Asian, and “boreal” American firs (A. lasiocarpa, A. balsamea, A. fraseri) was estimated as the Pliocene-Pleistocene. Based on the phylogenetic reconstruction obtained, the most plausible biogeographic scenarios were suggested. It is noted that the existing systematic classification of the genus Abies strongly contradicts with phylogenetic reconstruction and requires revision.  相似文献   

12.
There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.  相似文献   

13.
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922.  相似文献   

14.
Species of the genus Meladema (Dytiscidae, Colymbetinae) are some of the largest macroinvertebrates in the western Palearctic region, being top predators in fishless streams. Two of the three described species, Meladema imbricata (Wollaston, 1871) and Meladema lanio (Fabricius, 1775) are Macaronesian endemics from the Canary Islands and Madeira, respectively, while the third, Meladema coriacea Laporte, 1835, is widely distributed from Morocco and the Iberian Peninsula to Turkey, including the Canary Islands. Previous phylogenetic analysis using only mitochondrial markers revealed the existence of two cryptic lineages within M. coriacea, one restricted to Corsica and the other including the rest of sampled populations. We reconstruct here the evolutionary history of the species of Meladema using a more comprehensive sampling covering its whole geographical range, adding nuclear markers and Bayesian molecular dating. Using environmental niche modelling, we test for possible differences in climatic preferences among lineages and reconstruct their ancestral climatic niche. Our results strongly supported the existence of four monophyletic lineages represented by the three recognized species plus a fourth cryptic lineage with populations of M. coriacea from the Tyrrhenian islands (Corsica, Sardinia and Montecristo). This pattern is not likely to be the result of mitochondrial artefacts due to Wolbachia infection, as all 11 tested individuals were negative for this parasite. Dating analysis placed the origin of Meladema in the Middle Miocene although diversification among extant Meladema lineages started in the early Pleistocene and took place in a relatively short time period. Phylogeographic analysis inferred a continental origin of Meladema, with an independent colonization of the Macaronesian and Mediterranean islands. From the south‐western Mediterranean region, the continental M. coriacea expanded its range up to Bulgaria and Turkey in the northern basin and to Tunisia in the southern. Results of niche modelling showed that seasonality is the critical factor in shaping the current distribution of Meladema. Island lineages (M. imbricata, M. lanio and the Tyrrhenian lineage of M. coriacea) occur in sites with low seasonality, within the range of the reconstructed ancestral climatic niche of the genus. On the contrary, continental M. coriacea expanded its range to localities outside the ancestral climatic range of the genus, with a higher seasonality and aridity.  相似文献   

15.
Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade.  相似文献   

16.
Phrynosomatid lizards are among the most common and diverse groups of reptiles in western North America, Mexico, and Central America. Phrynosomatidae includes 136 species in 10 genera. Phrynosomatids are used as model systems in many research programs in evolution and ecology, and much of this research has been undertaken in a comparative phylogenetic framework. However, relationships among many phrynosomatid genera are poorly supported and in conflict between recent studies. Further, previous studies based on mitochondrial DNA sequences suggested that the most species-rich genus (Sceloporus) is possibly paraphyletic with respect to as many as four other genera (Petrosaurus, Sator, Urosaurus, and Uta). Here, we collect new sequence data from five nuclear genes and combine them with published data from one additional nuclear gene and five mitochondrial gene regions. We compare trees from nuclear and mitochondrial data from 37 phrynosomatid taxa, including a “species tree” (from BEST) for the nuclear data. We also present a phylogeny for 122 phrynosomatid species based on maximum likelihood analysis of the combined data, which provides a strongly-supported hypothesis for relationships among most phrynosomatid genera and includes most phrynosomatid species. Our results strongly support the monophyly of Sceloporus (including Sator) and many of the relationships within it. We present a new classification for phrynosomatid lizards and the genus Sceloporus, and offer a new tree with branch lengths for use in comparative studies.  相似文献   

17.
To determine evolutionary relationships among all Japanese members of the genus Salvia (Lamiaceae), we conducted molecular phylogenetic analyses of two chloroplast DNA (cpDNA) regions (rbcL and the intergenic spacer region of trnLtrnF:trnLtrnF) and one nuclear DNA (nrDNA) region (internal transcribed spacer, ITS). In cpDNA, nrDNA, and cpDNA+nrDNA trees, we found evidence that all Japanese and two Taiwanese Salvia species are included in a clade with other Asian Salvia, and Japanese Salvia species were distributed among three subclades: (1) S. plebeia (subgenus Sclarea), (2) species belonging to subg. Salvia, and (3) species belonging to subg. Allagospadonopsis. At the specific level our findings suggest: a close relationship between S. nipponica and S. glabrescens, no support for monophyly of S. lutescens and its varieties in cpDNA, nrDNA and cpDNA+nrDNA trees, and that S. pygmaea var. simplicior may be more closely related to S. japonica than to other varieties of S. pygmaea.  相似文献   

18.
Melastoma comprises more than 20 shrub species and is distributed in tropical Asia and Oceania. Melastoma penicillatum, the most narrowly distributed taxon of this genus in China, was recently incorporated into another morphologically similar species, M. sanguineum. Based on its distinct morphological traits, unique habitat and flowering time, we propose that M. penicillatum should be a distinct species. In this study, we sequenced three nuclear genes and four chloroplast intergenic spacers of M. sanguineum and M. penicillatum at two locations in Hainan to test this hypothesis. There was no sequence variation at all four chloroplast intergenic spacers within and between M. sanguineum and M. penicillatum, suggesting that they should have diverged recently. However, they showed strong divergence at all three nuclear genes and no shared haplotypes were observed between them. Bayesian clustering-based STRUCTURE analysis revealed that individuals of M. sanguineum and M. penicillatum were clustered into their own clades. Fst calculations showed that both taxa had marked population genetic differentiation, but population differentiation in M. penicillatum was stronger than that in M. sanguineum. Stronger population differentiation in M. penicillatum may be caused by its discontinuous high-elevation and understory habitats, which is disadvantageous for bird-mediated dispersal. Our analysis based on the isolation-with-migration (IM) model revealed bidirectional, asymmetrical gene flow in M. sanguineum and little gene flow in M. penicillatum. Taken together, our results indicate that M. penicillatum is a distinct species and should not be incorporated into M. sanguineum. The two species might have diverged recently, and lineage sorting has been incomplete. Differential adaptation to different elevations might have led to speciation in this case.  相似文献   

19.
Phylogenetic analyses using up to 1532 base pairs (bp) of mitochondrial DNA from 106 specimens of Neotropical Mabuya, including 18 of the 19 recognized South American and Mesoamerican species, indicate that most species of the genus are monophyletic, including M. nigropunctata that had previously been reported to be paraphyletic. The present results shows that this species includes three highly divergent and largely allopatric lineages restricted to occidental, meridional, and oriental Amazonia. Our dataset demonstrates that previous claims regarding the paraphyletic status of M. nigropunctata and the phylogenetic relationships within this species complex based on the analysis of three mitochondrial and four nuclear genes (approx. 5000 bp) were erroneous and resulted from two contaminated cytochrome b sequences.The phylogenetic results indicate that diversification in the Neotropical genus Mabuya started approximately in the Middle Miocene (15.5–13.4 Ma). The divergence dates estimated for the Mabuya nigropunctata species complex suggest that the major cladogenetic events that produced the three main groups (occidental (oriental + meridional)) occurred during the Late Miocene. These estimations show that diversification within the M. nigropunctata species complex was not triggered by the climatic changes that occurred during the Pleistocene, as has been suggested by several authors. Rather, our data support the hypothesis that the late tertiary (essentially Miocene epoch) was a period that played a very important role in the generation of biological diversity in the Amazonian forests.Speciation between Mabuya carvalhoi, endemic to the coastal mountain range of Venezuela, and M. croizati, restricted to the Guiana Shield, occurred during the Middle Miocene and may have been as the result of a vicariant event produced by the formation of the present day Orinoco river drainage basin and the consequent appearance of the Llanos del Orinoco, which acted as a barrier to dispersal between these two species. The split between M. bistriata and M. altamazonica and between the occidental and (meridional + oriental) clades of M. nigropunctata fits very well with the biogeographic split between the eastern and western Amazon basins reported for several other taxa.  相似文献   

20.
The genus Caulerpa consists of about 75 species of tropical to subtropical siphonous green algae. To better understand the evolutionary history of the genus, a molecular phylogeny was inferred from chloroplast tufA sequences of 23 taxa. A sequence of Caulerpella ambigua was included as a potential outgroup. Results reveal that the latter taxon is, indeed, sister to all ingroup sequences. Caulerpa itself consists of a series of relatively ancient and species‐poor lineages and a relatively modern and rapidly diversifying clade, containing most of the diversity. The molecular phylogeny conflicts with the intrageneric sectional classification based on morphological characters and an evolutionary scheme based on chloroplast ultrastructure. High bootstrap values support monophyly of C. mexicana, C. sertularioides, C. taxifolia, C. webbiana, and C. prolifera, whereas most other Caulerpa species show para‐ or polyphyly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号