首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

2.
Change of carotenoid composition in crabs during embryogenesis   总被引:1,自引:0,他引:1  
Changes of the qualitative and quantitative compositions of carotenoids are studied at various development stages of the external hard roe, determined based on color differences, for the species C. opilio, P. camtschaticus, and P. platypus. It has been revealed that the major carotenoids of the new egg are astaxanthin and β-carotene. Intermediate products of transformation of β-carotene into astaxanthin are identified: echinenone, canthaxanthine, and phenicoxanthine. The carotenoid content per embryo for the new hard roe of C. opilio (the orange egg) amounted to 22.7 ng, of P. camtschaticus and P. platypus (the violet egg)—to 49.2 and 23.3 ng, respectively. In the hard roe at the later development stage (the brown egg) the carotenoid content was decreased to 13.1 ng in C. opilio and to 20.1 ng in P. camtschaticus. Development of embryos is accompanied by accumulation of esterified carotenoids and a decrease of β-carotene and astaxanthine concentrations in all studied species.  相似文献   

3.
Zeaxanthin is an essential nutrient for prevention of macular degeneration. However, it is limited in our diet. For the production of zeaxanthin, we have engineered zeaxanthin synthesis into a carotenoid mutant of Xanthophyllomyces dendrorhous which is blocked in astaxanthin synthesis and accumulates β-carotene instead. Two strategies were followed to reach high-yield zeaxanthin synthesis. Total carotenoid synthesis was increased by over-expression of genes HMGR, crtE, and crtYB encoding for limiting enzymes in the pathway leading to and into carotenoid biosynthesis. Then bacterial genes crtZ were used to extend the pathway from β-carotene to zeaxanthin in this mutant. The increase of total carotenoids and the formation of zeaxanthin is dependent on the number of gene copies of crtYB and crtZ integrated into the X. dendrorhous upon transformation. The highest zeaxanthin content around 500 μg/g dw was reached by shaking flask cultures after codon optimization of crtZ for Xanthophyllomyces. Stabilization of carotenoid and zeaxanthin formation in the final transformant in the absence of selection agents was achieved after passing through a sexual cycle and germination of basidiospores. The values for the transformant before and after stabilization were very similar resembling about 70 % of total carotenoids and corresponding to a conversion rate of 80 % for hydroxylation of β-carotene to zeaxanthin. The stabilized transformant allowed experimental small-scale fermentation yielding X. dendrorhous cells with a zeaxanthin content similar to the shaking flask cultures. Our result demonstrates the potential of X. dendrorhous for its development as a zeaxanthin producer and its suitability for large-scale fermentation.  相似文献   

4.
Provitamin A (proVA) carotenoids are converted into retinol (vitamin A) in the human body, are the subject of human nutrition studies, and are targets for biofortification of staple crops. β-Carotene has been the principal target for enhancing levels of proVA. There is recent interest in enhancing the proVA carotenoid β-cryptoxanthin since it has excellent bioavailability, and in maize may be nearly as effective as β-carotene in providing retinol to humans. This study was designed to enhance our understanding of the genetic control of: levels of β-cryptoxanthin, conversion of β-carotene into β-cryptoxanthin and zeaxanthin, conversion of β-cryptoxanthin into zeaxanthin, and flux into and within the β-branch of carotenoid pathway. A biparental population derived from two inbreds with relatively high levels of β-cryptoxanthin and different ratios of β-carotene to β-cryptoxanthin and β-cryptoxanthin to zeaxanthin was studied. Three field replications of this F2:3 population were grown, grain analyzed by liquid chromatography (LC), and composite interval mapping (CIM) performed to identify 90 quantitative trait loci (QTL) for carotenoids. We detected QTL for β-carotene/(β-cryptoxanthin + zeaxanthin) and (β-carotene + β-cryptoxanthin)/zeaxanthin ratios that contain candidate gene hydroxylase 4 (hyd4), which has not been previously associated with QTL for carotenoids in maize grain. Two color assessment methods, visual score and chromameter reading, were used to phenotype one replicate of the population for initial assessment as simple alternative measuring procedures. A common finding for LC and chromameter analysis included QTL on chromosome 5 that contain candidate gene lycopene β cyclase (lcyβ).  相似文献   

5.
6.
Carotenes are plant secondary metabolites that are important for human health. Additionally, carotenes influence fruit color, which is a major trait for breeding. We compared the expression and sequences of genes related to color phenotypes in tomato inbred lines that produce different colors of fleshy fruit. Up-regulation of CYC-B expression and higher amount of β-carotene content in fruit ripening stage and nucleotide variations in the 5′ region of the gene were detected in orange fruited inbred lines compared to the other lines. Our results indicated that there is a close relationship between the expression pattern of the CYC-B gene and the orange color of fleshy fruit. We identified 4 SNPs in the promoter region of CYC-B genes associated with the orange fruit color. Moreover, the segregation ratio and color phenotypes in an F2 generation further indicated that one of the detected SNPs were associated with the orange color in the tested inbred lines. Our study provides valuable information to breeders for marker-assisted selection to produce desirable tomato varieties with health benefits by varying carotenoid levels.  相似文献   

7.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

8.
9.
Carotenoids represent a diverse group of pigments derived from the common isoprenoid precursors and fulfill a variety of critical functions in plants and animals. Phytoene synthase (PSY), a transferase enzyme that catalyzes the first specific step in carotenoid biosynthesis plays a central role in the regulation of a number of essential functions mediated via carotenoids. PSYs have been deeply investigated in plants, bacteria and algae however in apicomplexans it is poorly studied. In an effort to characterize PSY in apicomplexans especially the malaria parasite Plasmodium falciparum (P. falciparum), a detailed bioinformatics analysis is undertaken. We have analysed the Phylogenetic relationship of PSY also referred to as octaprenyl pyrophosphate synthase (OPPS) in P. falciparum with other taxonomic groups. Further, we in silico characterized the secondary and tertiary structures of P. falciparum PSY/OPPS and compared the tertiary structures with crystal structure of Thermotoga maritima (T. maritima) OPPS. Our results evidenced the resemblance of P. falciparum PSY with the active site of T. maritima OPPS. Interestingly, the comparative structural analysis revealed an unconserved unique loop in P. falciparum OPPS/PSY. Such structural insights might contribute novel accessory functions to the protein thus, offering potential drug targets.  相似文献   

10.
Astaxanthin is a high-value ketocarotenoid rarely found in plants. It is derived from β-carotene by the 3-hydroxylation and 4-ketolation of both ionone end groups, in reactions catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. We investigated the feasibility of introducing an extended carotenoid biosynthesis pathway into rice endosperm to achieve the production of astaxanthin. This allowed us to identify potential metabolic bottlenecks that have thus far prevented the accumulation of this valuable compound in storage tissues such as cereal grains. Rice endosperm does not usually accumulate carotenoids because phytoene synthase, the enzyme responsible for the first committed step in the pathway, is not present in this tissue. We therefore expressed maize phytoene synthase 1 (ZmPSY1), Pantoea ananatis phytoene desaturase (PaCRTI) and a synthetic Chlamydomonas reinhardtii β-carotene ketolase (sCrBKT) in transgenic rice plants under the control of endosperm-specific promoters. The resulting grains predominantly accumulated the diketocarotenoids canthaxanthin, adonirubin and astaxanthin as well as low levels of monoketocarotenoids. The predominance of canthaxanthin and adonirubin indicated the presence of a hydroxylation bottleneck in the ketocarotenoid pathway. This final rate-limiting step must therefore be overcome to maximize the accumulation of astaxanthin, the end product of the pathway.  相似文献   

11.
12.
The changes in pigment content and composition of the unicellular alga Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta) were studied. This alga is unique in its ability to accumulate high amounts of arachidonic acid in the cell during cultivation under different irradiances and nitrogen availability in the medium. Under low irradiance of 35 μE/(m2 s) photosynthetically active radiation the P. incisa cultures possessed slow growth and a relatively low carotenoid-to-chlorophyll ratio. At higher irradiances (200 and 400 μE/(m2 s)) on complete medium, the alga displayed higher growth rate and an increase in the carotenoid content, especially that of β-carotene and lutein. Both on nitrogen-free (regardless of illumination intensity) and nitrogen-replete medium (under high light), a considerable increase in the ratio of carotenoid and chlorophyll contents was recorded. Predominant accumulation of xanthophylls took place in thylakoid membranes, whereas β-carotene deposition occurred mainly in the cytoplasmic lipid globules (oil bodies); lower amounts of carotenoids were accumulated in the absence of nitrogen. Under high light and nitrogen-deficiency conditions, an increase in violaxanthin de-epoxidation and nonphotochemical quenching was recorded together with a decline in variable chlorophyll fluorescence (F v/F m) level. A possible photoprotective role of carotenoids in adaptation of P. incisa to high light under nitrogen starvation conditions is discussed.  相似文献   

13.

Main conclusion

Storage promotes carotenoid accumulation and converts amylochromoplasts into chromoplasts in winter squash. Such carotenoid enhancement is likely due to continuous biosynthesis along with reduced turnover and/or enhanced sequestration. Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage improved visual appearance of fruit flesh color from light to dark orange, and promoted continuous accumulation of carotenoids during the first 2-month storage. Such an increased carotenoid accumulation was found to be concomitant with starch breakdown, resulting in the conversion of amylochromoplasts into chromoplasts. The butternut fruits contained predominantly β-carotene, lutein, and violaxanthin. Increased ratios of β-carotene and violaxanthin to total carotenoids were noticed during the storage. Analysis of carotenoid metabolic gene expression and PSY protein level revealed a decreased expression of carotenogenic genes and PSY protein following the storage, indicating that the increased carotenoid level might not be due to increased biosynthesis. Instead, the increase likely resulted from a continuous biosynthesis with a possibly reduced turnover and/or enhanced sequestration, suggesting a complex regulation of carotenoid accumulation during fruit storage. This study provides important information to our understanding of carotenogenesis and its regulation during postharvest storage of fruits.  相似文献   

14.
The correlation of the state of glutathione complex composed of reduced glutathione (GSH), glutathione reductase (GR) activity and glutathione peroxidase (GP) and the qualitative composition of carotenoids was investigated in the bivalve mollusk Anadara kagoshimensis (Tokunaga, 1906). Using high-performance liquid chromatography, UV-Vis and mass spectra, 7 types of carotenoids (trans- and cis-pectenolon, alloxanthine, pectenol A, β-carotene, zeaxanthin and diatoxanthin) were identified in tissues of this species and their quantitative ratio was determined. A positive correlation (R 2 > 0.9) was established between GSH and most carotenoid levels. A negative correlation was found for the GR–carotenoids (R 2 > 0.75) and GP–pectenol A (R 2 > 0.988) systems. The cause-and-effect relations of these regularities are discussed.  相似文献   

15.
A β-carotene is the most well-known dietary source as provitamin A carotenoids. Among β-carotene-producing Golden Rice varieties, PAC (Psy:2A:CrtI) rice has been previously developed using a bicistronic recombinant gene that linked the Capsicum Psy and Pantoea CrtI genes by a viral 2A sequence. To enhance β-carotene content by improving this PAC gene, its codon was optimized for rice plants (Oryza sativa L.) by minimizing the codon bias between the transgene donor and the host rice and was then artificially synthesized as stPAC (stPsy:2A:stCrtI) gene. The GC content (58.7 from 50.9%) and codon adaptation index (0.85 from 0.77) of the stPAC gene were increased relative to the original PAC gene with 76% DNA identity. Among 67 T1 seeds of stPAC transformants showing positive correlations between transgene copy numbers (up to three) and carotenoid contents, three stPAC lines with a single intact copy were chosen to minimize unintended insertional effects and compared to the representative line of the PAC transgene with respect to their codon optimization effects. Translation levels were stably increased in all three stPAC lines (3.0-, 2.5-, 2.9-fold). Moreover, a greater intensity of the yellow color of stPAC seeds was correlated with enhanced levels of β-carotene (4-fold, 2.37 μg/g) as well as total carotenoid (2.9-fold, 3.50 μg/g) relative to PAC seeds, suggesting a β-branch preference for the stPAC gene. As a result, the codon optimization of the transgene might be an effective tool in genetic engineering for crop improvement as proven at the enhanced levels of translation and carotenoid production.  相似文献   

16.

Objectives

To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation.

Results

Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a β-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains.

Conclusions

A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.
  相似文献   

17.
Carotenoids in cassava storage roots play important roles in benefiting people’s health in the tropics because they provide essential nutrients and antioxidants. Although the related genes and loci associated with carotenoid metabolism in many species are well reported, in cassava they are poorly understood. In the present study, GWAS base on SLAF-seq was used in detecting the related genes and loci correlated to carotenoid contents in 98 accessions from a cassava F1 mapping population. The 98 accessions were divided into four subgroups. On the basis of general linear and compressed linear models, 144 genes were detected by selective sweep analysis, and 84 SNPs and 694 genes were detected by association mapping, in which Manes.04G164700 (XanDH) and Manes.11G105300 (AAO) were probably involved in the downstream pathway of carotenoid metabolism, and their expressions in six cassava genotypes were confirmed. Our results will be useful in yellow-root cassava variety improvement and provide the most effective and sustainable approach to maximize the nutritional and health benefits of carotenoid to a large number of populations.  相似文献   

18.
Seedlessness, flavor, and color are top priorities for mandarin (Citrus reticulata Blanco) cultivar improvement. Given long juvenility, large tree size, and high breeding cost, marker-assisted selection (MAS) may be an expeditious and economical approach to these challenges. The objectives of this study were to construct high-density mandarin genetic maps and to identify single nucleotide polymorphism (SNP) markers associated with fruit quality traits. Two parental genetic maps were constructed from an F1 population derived from ‘Fortune’ × ‘Murcott’, two mandarin cultivars with distinct fruit characters, using a 1536-SNP Illumina GoldenGate assay. The map for ‘Fortune’ (FOR) consisted of 189 SNPs spanning 681.07 cM and for ‘Murcott’ (MUR) consisted of 106 SNPs spanning 395.25 cM. Alignment of the SNP sequences to the Clementine (Citrus clementina) genome showed highly conserved synteny between the genetic maps and the genome. A total of 48 fruit quality quantitative trait loci (QTLs) were identified, and ten of them stable over two or more samplings were considered as major QTLs. A cluster of QTLs for flavedo color space values L, a, b, and a/b and juice color space values a and a/b were detected in a single genomic region on linkage group 4. Two carotenoid biosynthetic pathway genes, pds1 and ccd4, were found within this QTL interval. Several SNPs were potentially useful in MAS for these fruit characteristics. QTLs were validated in 13 citrus selections, which may be useful in further validation and tentative MAS in mandarin fruit quality improvement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号