首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

2.
Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non‐native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non‐native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non‐native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non‐native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest's environmental uniqueness—and thus ecological isolation—beyond the Macaronesian islands.  相似文献   

3.
The utility of elevational gradients as tools to test either ecological hypotheses and delineate elevation‐associated environmental factors that explain the species diversity patterns is critical for moss species conservation. We examined the elevational patterns of species richness and evaluated the effects of spatial and environmental factors on moss species predicted a priori by alternative hypotheses, including mid‐domain effect (MDE), habitat complexity, energy, and environment proposed to explain the variation of diversity. Last, we assessed the contribution of elevation toward explaining the heterogeneity among sampling sites. We observed the hump‐shaped distribution pattern of species richness along elevational gradient. The MDE and the habitat complexity hypothesis were supported with MDE being the primary driver for richness patterns, whereas little support was found for the energy and the environmental factors.  相似文献   

4.
Montane birds face significant threats from a warming climate, so determining the environmental factors that most strongly influence the composition of such assemblages is of critical conservation importance. Changes in temperature and other environmental conditions along elevational gradients are known to influence the species richness and abundance of bird assemblages occupying mountains. However, the role of species‐specific traits in mediating the responses of bird species to changing conditions remains poorly understood. We aimed to determine whether different bird species responded differently to changing environmental conditions in a relatively understudied biodiversity hotspot in subtropical rainforest on the east coast of Australia. We examined patterns in avian species richness and abundance along two rainforest elevational gradients using monthly point counts between September 2015 and October 2016. Environmental data on temperature, wetness, canopy cover and canopy height were collected simultaneously, and trait information on body size and feeding guild membership for each bird species was obtained from the Handbook of Australian, New Zealand and Antarctic Birds. We used a generalized linear mixed modelling (GLMM) framework to determine the drivers of species richness and abundance and to quantify species’ trait–environment interactions. GLMMs indicated that temperature alone was significantly positively correlated with species richness and abundance. Species richness declined with increasing elevation. When modelling abundance, we found that feeding guild membership did not significantly affect species’ responses to environmental conditions. In contrast, the predicted abundance of a species was found to depend on its body size, due to significant positive interactions between this trait, temperature and canopy cover. Our findings indicate that large‐bodied birds are likely to increase in abundance more rapidly than small‐bodied birds with continued climatic warming. These results underline the importance of temperature as a driving factor of avian community assembly along environmental gradients.  相似文献   

5.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

6.
A monotonic decline in species richness with increasing elevation has often been considered a general pattern, but recent evidence suggests that the dominant pattern is hump-shaped with maximum richness occurring at some mid-elevation point. To analyse the relationship between species richness and elevation at a local scale we surveyed birds from lowlands to timberline in the Bolivian Andes. We divided the transect into 12 elevational belts of 250 m and standardized species richness in each belt with both individual- and sample-based rarefaction and richness estimation. The empirical data were then correlated to four explanatory variables: 1) area per elevational belt, 2) elevation (also representing ecosystem productivity), 3) a mid-domain effect (MDE) null model of geometrically constrained empirical range sizes, and 4) a hump-shaped model derived empirically for South American birds representing the regional species pool hypothesis. Local species richness peaked at ca 1000 m elevation, declined sharply to ca 1750 m, and then remained roughly constant. Elevation was the best single predictor, accounting for 78–85% of the variance in the empirical data. A multiple regression model with elevation, area, and MDE explained 85–90% of the variance. Monte Carlo simulations showed that the richness peak at 1000 m is the result of an overlap of two distinct avifaunas (lowland and highland) and that the correlation to MDE in the multiple regression was likely spurious. We recommend complementing correlation analyses involving MDE predictions with an examination of the distribution of range midpoints. The steep decline at mid-elevations was mainly due to a rapid loss of lowland species. The high-elevation plateau is striking and unexpected, but has also been found previously. It cannot be explained at present and exemplifies that despite several decades of research elevational gradients are still not well understood.  相似文献   

7.
 物种丰富度的分布格局及其形成机制是生态学研究的热点。以往的研究主要描述丰富度的格局, 而对其形成机制研究较少, 且主要集中于探讨单个因子或过程的影响。物种丰富度同时受到多个因子和过程的综合作用, 面积、温度及物种分布区限制被认为是控制山地物种丰富度海拔格局的主要因素, 三者同时沿海拔梯度而变化, 同时作用于丰富度的海拔格局。幂函数种-面积关系(SAR)、生态学代谢理论(MTE)及中域效应假说(MDE)分别基于以上3个因素, 从机制上解释了物种丰富度 的海拔格局。探讨这些假说的相对影响对研究物种丰富度的大尺度格局及其形成机制具有重要意义。方差分离方法有利于分解不同因素的影响, 为此, 该文以秦岭太白山的植物物种丰富度为例, 采用方差分离和逐步回归方法, 分析了SAR、MTE及MDE对物种丰富度海拔格局的影响。结果表明, 太白山的植物物种丰富度沿海拔梯度呈单峰分布格局, 但丰富度峰值存在类群差异; 对太白山所有植物物种丰富度的垂直格局而言, SAR、MTE及MDE分别解释了其物种丰富度随海拔变化的66.4%、19.8%和37.9%, 共同解释了84.6%, 在消除其他因素的影响后, SAR和MTE的独立影响较高(分别为25.5%和17.7%), 而MDE的独立影响不显著; 分类群研究则发现, 苔藓植物丰富度的海拔格局主要受MDE的影响, 蕨类植物丰富度的海拔格局同时受到SAR、MTE以及MDE的影响, 而种子植物物种丰富度的海拔格局主要受SAR和MTE影响。  相似文献   

8.
Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and trees were counted and identified in eight sites from 100 to 3500 m asl, and sequence data retrieved from GenBank for the same or closely related species were used to reconstruct their phylogenies. Patterns of species richness and phylogenetic diversity were similar for both macrofungi and trees, but macromycete richness and diversity peaked at mid‐elevations, whereas woody plant richness and diversity did not show significant trends with elevation. Phylogenetic similarity among sites was low for both groups and decreased as elevational distance between sites increased. Macromycete communities displayed phylogenetic overdispersion at low elevations and phylogenetic clustering at high elevations; the latter is consistent with environmental filtering at high elevation sites. Woody plants generally exhibited phylogenetic clustering, consistent with the potential importance of environmental filtering throughout the elevational gradient.  相似文献   

9.
Two distinct diversity patterns are observed along tropical elevations: (a) decreasing number of species toward high elevations and (b) a hump-shaped pattern with the peak at mid-elevations. As diversity is likely supported by ecological capacity of the environment, decomposition of the overall richness into ecological facets and considering number of individuals within them is crucial for the proper understanding of richness patterns. We examined abundances of different avian guilds along the forested part of the elevational gradient on Mt. Cameroon. We (a) compared richness and abundance elevational patterns, (b) assessed the effective contribution of multiple guilds to richness and abundance patterns, and (c) assessed to what extent observed abundances of guilds differed from those expected by chance. We sampled birds in 2011–2015 during the dry season at seven elevations (30 m, 350 m, 650 m, 1100 m, 1500 m, 1850 m, 2200 m a.s.l.). For each assemblage, we estimated proportions of species and individuals that use particular diets, foraging modes, and feeding strata. We found that a rather decreasing pattern of species richness turns into a hump-shaped one if we look at the total abundances, implying different mechanisms behind these patterns. The number of species and individuals thus do not seem to be directly related, contrary to “the more-individuals hypothesis.” Abundances of foliage gleaners at mid-elevations, nectarivores at high elevations, and frugivores at low elevations deviated from random expectations. Our results imply that parts of ecological space are filled separately by bird species and individuals along elevation of Mt. Cameroon.  相似文献   

10.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

11.
Land‐use intensification has consequences for biodiversity and ecosystem functioning, with various taxonomic groups differing widely in their sensitivity. As land‐use intensification alters habitat structure and resource availability, both factors may contribute to explaining differences in animal species diversity. Within the local animal assemblages the flying vertebrates, bats and birds, provide important and partly complementary ecosystem functions. We tested how bats and birds respond to land‐use intensification and compared abundance, species richness, and community composition across a land‐use gradient including forest, traditional agroforests (home garden), coffee plantations and grasslands on Mount Kilimanjaro, Tanzania. Furthermore, we asked how sensitive different habitat and feeding guilds of bats and birds react to land‐use intensification and the associated alterations in vegetation structure and food resource availability. In contrast to our expectations, land‐use intensification had no negative effect on species richness and abundance of all birds and bats. However, some habitat and feeding guilds, in particular forest specialist and frugivorous birds, were highly sensitive to land‐use intensification. Although the habitat guilds of both, birds and bats, depended on a certain degree of vegetation structure, total bat and bird abundance was mediated primarily by the availability of the respective food resources. Even though the highly structured southern slopes of Mount Kilimanjaro are able to maintain diverse bat and bird assemblages, the sensitivity of avian forest specialists against land‐use intensification and the dependence of the bat and bird habitat guilds on a certain vegetation structure demonstrate that conservation plans should place special emphasis on these guilds.  相似文献   

12.
Amazonian rivers have been proposed to act as geographic barriers to species dispersal, either driving allopatric speciation or defining current distribution limits. The strength of the barrier varies according to the species’ ecological characteristics and the river's physical properties. Environmental heterogeneity may also drive compositional changes but has not been well assessed in Amazonia. Aiming to understand the contributions of riverine barriers and environmental heterogeneity in shaping compositional changes in Amazonian forest bird assemblages, we focus on the Tapajós River. We investigate how spatial variation in species composition is related to physical barriers (Tapajós and Jamanxim rivers), species’ ecological characteristics (distinct guilds), and environmental heterogeneity (canopy reflectance, soils, and elevation). We sampled birds through point-counts and mist nets on both banks of the Tapajós and Jamanxim rivers. To test for relationships between bird composition and environmental data, we used Mantel and partial Mantel tests, NMDS, and ANOVA + Tukey HSD. The Mantel tests showed that the clearest compositional changes occurred across the Tapajós River, which seems to act unequally as a significant barrier to the bird guilds. The Jamanxim River was not associated with differences in bird communities. Our results reinforce that the Tapajós River is a biogeographical boundary for birds, while environmental heterogeneity influences compositional variation within interfluves. We discuss the combined influence of geographical barriers, environmental heterogeneity, and ecological characteristics of species in shaping species distributions and community composition and the complexity of extrapolating the patterns found for birds to other Amazonian organisms. Abstract in Portuguese is available with online material.  相似文献   

13.
刘超  丁志锋  丁平 《生态学报》2015,35(20):6759-6768
为探究千岛湖陆桥岛屿不同鸟类集团对栖息地片段化敏感性的差异和季节变化,于2009年4月—2012年1月鸟类繁殖季(4、5、6月)和冬季(11、12、1月)对千岛湖41个陆桥岛屿鸟类集团进行了研究。结果表明,冬季杂食鸟对片段化敏感性高于食虫鸟,繁殖季时二者无显著差异,繁殖季和冬季时下层鸟对片段化敏感性均高于林冠鸟,冬季留鸟对片段化敏感性高于候鸟,繁殖季则无显著差异。杂食鸟和留鸟对片段化敏感性存在季节差异,而食虫鸟、林冠鸟、下层鸟和候鸟对片段化敏感性均无季节差异。不同鸟类集团对栖息地片段化敏感性的差异和季节变化规律,有助于人们在栖息地管理和保护区设计时采取更有针对性的鸟类保护措施。  相似文献   

14.
Most studies have attempted to identify the major environmental factors responsible for elevational variations in species richness. Such studies have been mainly performed in temperate and tropical areas, whereas the mediterranean biome has been substantially neglected. The aim of this paper was to disentangle the effects of available area, mid-domain constraints, and the environmental tolerance of species, on the altitudinal distribution of tenebrionid beetles in a Mediterranean region. A comprehensive faunistic database was used to assess the elevational distribution of tenebrionids in Latium (Central Italy). Variations in species richness, beta diversity and nestedness were analysed in association with variation in species ranges and midpoints. Variation in species richness was contrasted with patterns expected on the basis of the mid domain effect (MDE) and available surface area. After correcting for differences in area availability due to the conical shape of mountains, an unexpected triphasic pattern emerged: (1) at low altitudes, species richness was higher than expected on the basis of the effect of area and the MDE; (2) at around 800 m elevation, there is an abrupt change in species assemblages, and richness values fit those predicted by the MDE; (3) a new dramatic change occurred at 1,700 m, with tenebrionid assemblages composed of a small number of mainly eurytopic species. The integrated approach used in this study demonstrates that neither MDE nor monotonic patterns fully explain the observed diversity patterns. Variations in species ranges indicate that the elevational gradient filters species according to their ecological tolerance.  相似文献   

15.
Aim (1) To explore the impact of land use, climate and environmental heterogeneity on fern species richness along a complete elevational gradient, and (2) to evaluate the relative importance of the three groups of variables within different elevational intervals. Location A temperate mountain region (55,507 km2) of Italy on the southern border of the European Alps divided into a regular grid of 1476 cells (grain 35.7 km2). Methods We applied multiple regression (spatial and non‐spatial) to determine the relative influence of the three groups of variables on species richness, including variation partitioning at two scales. We considered the whole gradient (all 1476 cells) to explain the overall elevational pattern of species richness, and we grouped the cells into elevational intervals of 500 m in order to evaluate the explanatory power of the predictors within different zones along the gradient. Results Species richness showed a hump‐shaped pattern with elevation, forming a plateau between 800 and 1500 m. The lowest species richness was found in warm and relatively dry disturbed lowlands. Moving upwards, the greatest species richness was found in forest‐dominated mid‐elevations with high environmental heterogeneity. At high elevations dominated by open natural habitats, where temperature and precipitation were relatively low, species richness declined but less sharply than in the lowlands. Although it was impossible to separate the effects of the three groups of predictors along the whole gradient, the analysis of separate elevational intervals shed light on their relative importance. The decline of species richness within lowlands was mainly related to a combined effect of deforestation and low environmental heterogeneity. In the middle part of the gradient, habitat heterogeneity and topographic roughness were positively associated with species richness. The richness decline within high‐elevation areas was related mostly to climatic constraints. Main conclusions Human impact due to land‐use modifications strongly affects the elevational pattern of species richness. It is therefore increasingly important to adopt a multiple‐hypothesis approach, taking anthropogenic effects explicitly into account when describing ecological processes along elevational gradients.  相似文献   

16.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

17.
Exploring elevational patterns in species richness and their underlying mechanisms is a major goal in biogeography and community ecology. Reptiles can be powerful model organisms to examine biogeographical patterns. In this study, we examine the elevational patterns of reptile species richness and test a series of hypotheses that may explain them. We sampled reptile communities along a tropical elevational gradient (100–1,500 m a.s.l.) in the Western Ghats of India using time‐constrained visual encounter surveys at each 100‐m elevation zone for 3 years. First, we investigated species richness patterns across elevation and the support of mid‐domain effect and Rapoport's rule. Second, we tested whether a series of bioclimatic (temperature and tree density) and spatial (mid‐domain effect and area) hypotheses explained species richness. We used linear regression and AICc to compare competing models for all reptiles, and each of the subgroups: snakes, lizards, and Western Ghats’ endemics. Overall reptile richness and lizard richness both displayed linear declines with elevation, which was best explained by temperature. Snake richness and endemic species richness did not systematically vary across elevation, and none of the potential hypotheses explained variation in them. This is the first standardized sampling of reptiles along an elevational gradient in the Western Ghats, and our results agree with the global view that temperature is the primary driver of ectotherm species richness. By establishing strong reptile diversity–temperature associations across elevation, our study also has implications for the impact of future climate change on range‐restricted species in the Western Ghats.  相似文献   

18.
It is widely believed that species richness patterns (SRPs) are shaped by both ecological and evolutionary processes. However, the relative roles of these processes remain unclear, especially for aquatic organisms. In this study, we integrated ecological and evolutionary measures to tease apart the relative influences of these factors on the SRP of Tibetan loaches along an extensive elevational gradient. We found that the Tibetan loaches displayed a richness pattern that peaked at midelevations. The mean annual temperature (MAT), mid‐domain effect (MDE), and summed age of colonization (SAC, complex of colonization age and colonization frequency) were the main drivers, accounting for 85%, 51%, and 88% of the variations in the SRP, respectively. The three predictors had very high combined effects (MAT‐MDE‐SAC, MAT‐SAC, and MDE‐SAC were 44%, 38%, and 6%, respectively). Our analyses suggested that energy input, time‐for‐speciation, and species dispersal may directly guide the SRP or mediate it by geometric constraints. Conclusively, the SRP of the Tibetan loaches with elevation is the outcome of interactions between biogeographical processes and regional ecological conditions.  相似文献   

19.
Abstract. Avian communities are often used by ecologists as indicators of environmental decline over large spatial areas, because of the ease with which birds can be monitored by nonprofessionals and the availability of continent‐wide breeding bird data. The influence of scale on the relationship between bird diversity and the characteristics of the landscape, which can serve as proxies for decline, is receiving greater attention but is still not well understood. We combined data from the Breeding Bird Survey with landscape characteristics derived from the National Land Classification Data for Ohio, USA, to determine the effects of landscape extent on relationships between birds and landscape characteristics. These relationships were determined through previous work to be correlated with avian richness and diversity. We created areas of varying sizes using buffers around each of 58 routes, and calculated diversity for several groups of birds: all birds, five habitat guilds, and three migration guilds. The landscape extent over which landscape characteristics were considered affected the relationship between these characteristics and bird richness and diversity overall, as well as richness and diversity for several of the habitat and migratory guilds. Diversity of woodland birds, Neotropical migrants, and richness of short‐distance migrants were best explained by the landscape characteristics examined here, possibly due to a less homogeneous collection of species in the other guild groups. These results suggest that more attention is required in selecting the appropriate scale when using landscape characteristics to predict or manage avian communities, as some characteristics may be more useful for management activities over small areas versus efforts over larger areas.  相似文献   

20.
Elevational patterns of species richness, local abundance and assemblage structure of rainforest birds of north‐eastern Australia were explored using data from extensive standardized surveys throughout the region. Eighty‐two species of birds were recorded with strong turnover in assemblage structure across the elevational gradient and high levels of regional endemism in the uplands. Both species richness and bird abundance exhibited a humped‐shaped pattern with elevation with the highest values being between 600 and 800 m elevation. While much of the variability in species richness could be explained by the species–area relationship, analyses of net primary productivity (NPP) and total daily energy consumption of the bird community (energy use) suggest that ecosystem energy flow or constraints may be a significant determinant of species richness. Species richness is positively correlated with local bird abundance which itself is closely related to total energy use of the bird community. We suggest the hypothesis that lower NPP limits bird abundance and energy use in the uplands (>500 m) and that low bird energy use and species richness in the lowlands is limited by a seasonal bottleneck in available primary productivity and/or a species pool previously truncated by an extinction filter imposed by the almost complete disappearance of rainforest in the lowlands during the glacial maxima. We suggest that some of the previously predicted impacts of global warming on biodiversity in the uplands may be partially ameliorated by increases in NPP because of increasing temperatures. However, these relationships are complex and require further data specifically in regard to direct estimates of primary productivity and detailed estimates of energy flow within the assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号