首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in abiotic factors along altitudinal and latitudinal gradients cause powerful environmental gradients. The topography of alpine areas generates environmental gradients over short distances, and alpine areas are expected to experience greater temperature increase compared to the global average. In this study, we investigate alpha, beta, and gamma diversity, as well as community structure, of vascular plant communities along altitudinal gradients at three latitudes in the Swedish mountains. Species richness and evenness decreased with altitude, but the patterns within the altitudinal gradient varied between sites, including a sudden decrease at high altitude, a monotonic decrease, and a unimodal pattern. However, we did not observe a decline in beta diversity with altitude at all sites, and plant communities at all sites were spatially nested according to some other factors than altitude, such as the availability of water or microtopographic position. Moreover, the observed diversity patterns did not follow the latitudinal gradient. We observed a spatial modularity according to altitude, which was consistent across sites. Our results suggest strong influences of site‐specific factors on plant community composition and that such factors partly may override effects from altitudinal and latitudinal environmental variation. Spatial variation of the observed vascular plant communities appears to have been caused by a combination of processes at multiple spatial scales.  相似文献   

2.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

3.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

4.
Plant facilitation (positive plant–plant interactions) strongly influences biodiversity, structure, and dynamics in plant communities, and the topic has received considerable attention among ecologists. Most studies of facilitation processes by shrubs have been conducted at small spatial scales between shrubs and their neighboring species. Yet, we know little about whether facilitation processes by shrubs at a small scale (i.e., a patch scale) also work at a larger scale (i.e., a site scale) in terms of the maintenance of biodiversity. Here, we report that the facilitative effects of shrubs on plant diversity at a larger scale can be explained by changing ecological stoichiometry. The soil fertility showed unimodal shape along shrub cover gradient, suggesting that the facilitative effects of a shrub do not necessarily increase as the shrub develops. The unimodal shape of dependence of plant species richness on shrub cover probably was generated by the unimodal dependence of soil fertility on shrub cover. Soil nutrient enrichment by shrubs shifted low N:P ratios of plant communities with low levels of shrub cover to more balanced N:P ratios at intermediate levels of shrub cover. At the peak N:P ratio along the gradient in shrub cover, the maximum species richness and functional richness were observed, which was consistent with the unimodal relationship predicted by the resource balance hypothesis. Thus, our findings showed that facilitation processes by shrubs at a patch scale also work at a larger scale in terms of the maintenance of biodiversity. Because observed larger-scale facilitation processes are enhanced at some intermediate levels of shrub cover, this study offers practical insight into the need for management practices that allow some intermediate levels of grazing by livestock for optimizing the role of larger-scale facilitation processes in the maintenance of biodiversity and ecosystem functioning in arid and semi-arid rangelands.  相似文献   

5.
No empirical studies have examined the relationship between diversity and spatial heterogeneity across unimodal species richness gradients. We determined the relationships between diversity and environmental factors for 144 0.18 m2 plots in a limestone pavement alvar in southern Ontario, Canada, including within-plot spatial heterogeneity in soil depth, microtopography and microsite composition. Species richness was unimodally related to mean soil depth and relative elevation. Microsite heterogeneity and soil depth heterogeneity were positively correlated with species richness, and the richness peaks of the unimodal gradients correspond to the maximally spatially heterogeneous plots. The best predictive models of species richness and evenness, however, showed that other factors, such as ramet density and flooding, are the major determinants of diversity in this system. The findings that soil depth heterogeneity had effects on diversity when the effects of mean soil depth were factored out, and that unimodal richness peaks were associated with high spatial heterogeneity in environmental factors represent significant contributions to our understanding of how spatial heterogeneity might contribute to diversity maintenance in plant communities.  相似文献   

6.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

7.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

8.
《植物生态学报》2016,40(9):861
Aims Spatial distribution patterns and formation mechanisms of species diversity are fundamental issues in community ecology. The objectives of this study are to assess the species diversity patterns at the different spatial scales in Jianfengling, Hainan Island, China.
Methods Based on the dataset from the 60 hm2 plot in the tropical montane rain forest in Jianfengling, Hainan Island, the spatial distribution patterns of species richness, species abundance, Shannon-Wiener, Simpson and Pielou’s evenness indices were analyzed at six spatial scales, including 5 m × 5 m, 10 m × 10 m, 20 m × 20 m, 40 m × 40 m, 100 m × 100 m, and 200 m × 200 m, respectively.Important findings
Results showed that spatial distribution patterns of species richness, species abundance and Shannon-Wiener index were much more obviously changed with the spatial scales than Simpson and Pielou’s evenness indices. Change of variance of the species richness with the increase of spatial scales was unimodal, which had the maximum value at the 20 m × 20 m scale. Variance of the species abundance showed a linear relationship with the increase of spatial scales. The positive relationship between species richness and abundance gradually decreased and even disappeared with the increase of sampling scales, which may be correlated with the increase of habitat heterogeneity. The effects of spatial scales on Shannon-Wiener, Simpson, and Pielou’s evenness indices may be also correlated with the composition of rare species in the plot.  相似文献   

9.
物种多样性的空间分布格局和维持机制是群落生态学的基本问题。为了探讨海南尖峰岭地区物种多样性空间分布格局的尺度效应, 以海南尖峰岭热带山地雨林60 hm2样地为研究对象, 分析了物种丰富度、物种多度、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数随6个空间取样尺度(5 m × 5 m、10 m × 10 m、20 m × 20 m、40 m × 40 m、100 m ×100 m、200 m × 200 m)的变化。结果表明: 相比Simpson指数和Pielou均匀度指数, 物种丰富度、多度以及Shannon-Wiener指数具有更为明显的空间尺度效应; 物种丰富度的方差随取样尺度增加呈现单峰分布特征, 并且在20 m × 20 m尺度上达到最大值, 而物种多度的方差随取样尺度的增加而增大; 物种丰富度和多度的正相关性随着取样尺度的增加逐渐减小甚至消失, 这可能与随取样尺度增加生境异质性增加有关; 取样尺度对3个物种多样性指数空间分布的影响可能与研究区域内稀有种的组成有关。  相似文献   

10.
向琳  陈芳清  官守鹏  王玉兵  吕坤 《生态学报》2019,39(21):8144-8155
研究植物群落功能多样性沿环境梯度的变化可以揭示功能多样性与生态系统功能间的关系及维持机制。以井冈山地区鹿角杜鹃(Rhododendron latoucheae)群落为研究对象,通过调查不同海拔梯度群落灌木层植物的物种组成与结构特征,研究了该群落类型灌木层植物的物种多样性、功能多样性、环境因子的特征及其相互之间的关系。结果表明:1)群落类型灌木层植物物种多样性和功能多样性沿海拔梯度呈现不同的变化趋势。物种多样性指数均随着海拔的升高呈减小趋势,而功能多样性指数的变化却较为复杂。其中FRic、FEveFDis随着海拔的升高显著减小,FDivRao却随海拔的升高而增加;2)群落中物种多样性和功能多样性呈现复杂的相关性。FRic、FEve与丰富度指数呈显著正相关,而Rao、FDis、FDivSimpson优势度指数呈线性相关关系,且具有显著相关性;3)群落所分布的坡位及土壤氮与磷含量等环境因子对灌木植物的功能多样性有着重要的影响。鹿角杜鹃群落灌木层植物的物种多样性和功能多样性的相互关系及其对环境变化的响应共同决定了群落的生态系统功能。  相似文献   

11.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

12.
《Global Change Biology》2017,23(11):4946-4957
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in‐field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in‐field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.  相似文献   

13.
山脉是生物多样性研究的热点地区,以往关于山脉的研究多集中于地上植物和脊椎动物,无脊椎动物相关的研究明显滞后。跳虫(Collembola)是土壤无脊椎动物的主要类群之一,在分解有机质、疏松和活化土壤过程中发挥着重要的作用。以跳虫为研究对象,采用梯度格局法,在长白山北坡自海拔800 m至1700 m,每隔150 m进行凋落物层和土壤层样品的采集,对比分析了土壤层和凋落物层的群落组成与群落结构,采用4个物种多样性指数(丰富度指数、Pielou均匀度指数、Shannon-Weiner多样性指数和Simpson多样性指数)和4个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、二次熵Rao''s Q指数和功能离散FEiv指数),探讨了多样性沿海拔梯度的分布格局。共获得跳虫5542头,隶属于12科42属83种,其中等节跳科为绝对优势类群(相对密度>50%)。非度量多维尺度分析结果表明,凋落物层和土壤层的跳虫群落结构差异显著,长角跳科、鳞跳科和疣跳科物种多分布于凋落物层,而棘跳科物种多分布于土壤层。线性或二次回归模型结果表明,在凋落物层跳虫的丰富度指数,Shannon-Weiner多样性指数和Simpson多样性指数沿海拔梯度的变化呈增加格局;但在土壤层跳虫物种多样性指数沿海拔梯度的变化无明显趋势。在凋落物层,跳虫的功能丰富度指数和功能离散度Rao''s Q指数随海拔梯度的变化呈现单峰分布格局;在土壤层,跳虫的功能丰富度指数随海拔梯度的变化也呈现单峰分布格局,但其他功能多样性指数沿海拔梯度的变化无明显趋势。研究表明凋落物层和土壤层跳虫的群落组成,群落结构及多样性存在显著差异,跳虫的物种多样性指数和功能多样性指数对海拔梯度变化的响应不同,未来在探讨土壤动物沿海拔梯度的分布格局及其物种共存机制时,应综合考量垂直分层(凋落物层和土壤层)和多个度量维度(物种多样性和功能多样性)。  相似文献   

14.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
新疆天山南坡中段种子植物区系垂直分布格局分析   总被引:2,自引:0,他引:2  
对植物多样性垂直分布格局及其维持机制的研究可以有效揭示植物物种多样性分布特征及其环境影响因子。本文通过野外调查、查阅标本并结合相关文献资料,对天山南坡中段种子植物区系沿海拔梯度的分布格局进行了系统研究。结果显示,在大区域尺度上,科属种的物种丰富度随海拔升高均呈先增加后减少的趋势,且最高值出现在中低海拔1900~2000 m处;不同生活型植物沿海拔梯度的变化格局有所不同,其中,乔木、一年生草本、藤本及寄生植物表现出随海拔升高物种丰富度逐渐降低的趋势,灌木、多年生草本及二年生草本植物物种丰富度则呈先增加后减少的变化趋势;从植物区系地理成分来看,世界分布所占的比重沿海拔梯度升高呈先增加后减少的趋势;温带地理成分所占的比重沿海拔梯度升高呈缓慢上升趋势;古地中海地理成分所占的比重沿海拔梯度升高呈先增加后减少然后再增加的变化趋势;热带地理成分所占的比重沿海拔升高呈逐渐下降的趋势;东亚地理成分所占的比重沿海拔梯度升高呈先增加后减少然后再增加的变化趋势。对该分布格局与当地干旱的气候条件及海拔梯度上热量和水分条件的变化相适应。  相似文献   

16.
Maohua Ma 《应用植被学》2008,11(2):269-278
Question: How does agricultural land usage affect plant species diversity in semi‐natural buffer strips at multiple scales? Location: Lepsämä River watershed, Nurmijärvi, Southern Finland. Methods: Species diversity indicators included both richness and evenness. Plant communities in buffer strips were surveyed in 29 sampling sites. Using ArcGIS Desktop 9.0 (ArcInfo) and Fragstats 3.3 for GIS analysis, the landscape composition around each sampling site was characterized by seven parameters in square sectors at five scales: 4, 36, 100, 196, and 324ha. For each scale, Principle Component Analysis was used to examine the importance of each structural metric to diversity indicators using multiple regression and other simple analyses. Results: For all but the smallest scales (4 ha), two structural metrics including the diversity of land cover types and percentage of arable land were positively and negatively correlated with species richness, respectively. Both metrics had the highest correlation coefficients for species richness at the second largest scale (196 ha). The density of arable field edges between the fields was the only metric that correlated with species evenness for all scales, which had highest predictive power at the second smallest scale (36 ha). Conclusions: Species richness and evenness of buffer strips had scale‐dependent relationships to land use in agricultural ecosystems. The results of this study indicated that species richness depends on the pattern of arable land use at large scales, which may relate to the regional species pool. Meanwhile, species evenness depended on the level of field edge density at small scales, which relates to how the nearby farmland was divided by the edges (e.g. many small‐scale fields with high edge density or a few big‐scale fields with low edge density). This implies that it is important to manage the biodiversity of buffer strips within a landscape context at multiple scales.  相似文献   

17.
常绿阔叶林是福建梅花山国家级自然保护区地带性植被。采用样带与典型群落调查法对区内的常绿阔叶林14400m2样地展开调查,并对植物多样性海拔梯度格局进行分析,结果表明:(1) 群落植物物种丰富度、Gleason丰富度指数、Simpson指数、Shannon Wiener指数和Pielou均匀度指数的均值分别为64.42、10.75、5.75、3.50、0.58,且这5种指数在各样带间差异极为显著,并随海拔的升高均呈单峰曲线变化,峰值出现在海拔700m~900m。(2) 群落各层次的植物物种丰富度、Shannon Wiener指数均呈现灌木层(包括幼树和层间植物)〉乔木层〉草本层的特征。乔木、灌木层物种丰富度与乔木层Shannon Wiener指数在海拔梯度上的样带间差异极显著,变化趋势与群落相似;灌木层与草本层Shannon Wiener指数以及草本层物种丰富度随海拔梯度变化不明显。因此,梅花山自然保护区常绿阔叶林植物物种多样性的海拔梯度格局呈现单峰分布,并支持中间高度膨胀模式(mid domain model)。  相似文献   

18.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

19.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

20.
In China, evergreen broad leaved forests (EBLFs) is one of the most important vegetation types which was widly distributed in subtropical area, and it plays a very important role in the global biological diversity and natural environment conservation also. In order to reveal species diversity and altitudinal gradient patterns of evergreen broad leaved forest in Meihuashan National Natural Reserve, Fujian Province. Five altitude transects were set up at a vertical interval of 200m between 375m and 1300m above sea level in the EBLFs distribution areas, and twenty four quadrats(14400m2) had been surveyed. Species richness(S), species richness index (dGl), Simpson index (D), Shannon Wiener index (H′), Pielou evenness index (J) had been used for analysis of species diversity and altitudinal gradient pattern of EBLFs. The average value of S, dGl, H′,J and D were 64.42, 10.75, 5.75, 3.50, 0.58 respectively. The difference of community species diversity index(S, dGl, D, H′, and J) was extremely significant between transects, and the altitudinal gradient patterns of species diversity presented the unimodal variable trend, with a peak in the mid altitude(700m-900m). The species richness and Shannon Wiener index of different layer were ranked as shrub layer (include young tree and the plants between layers)>arbor layer>herb layer. The species richness of tree and shrub layer, and Shannon Wiener index of tree layer were significantly different between at transects, and trends of altitude gradient was similar to community. The Shannon Wiener index of shrub layer and herb layer, and the species richness of herb layer did not change significantly along elevation gradient. Therefore, plant species diversity distribution pattern presented a unimodal variable trend along an elevation gradient, and supported “mid domain model” in EBLFs of Meihuashan National Nature Reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号