首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple scale‐dependent ecological processes influence species distributions. Uncovering these drivers of dynamic range boundaries can provide fundamental ecological insights and vital knowledge for species management. We develop a transferable methodology that uses widely available data and tools to determine critical scales in range expansion and to infer dominating scale‐dependent forces that influence spread. We divide a focal geographic region into different sized square cells, representing different spatial scales. We then used herbarium records to determine the species' occupancy of cells at each spatial scale. We calculated the growth in cell occupancy across scales to infer the scale dependent expansion rate. This is the first time such a ‘box‐counting’ method is used to study range expansion. We coupled this multi‐scale analysis with species distribution models to determine the range and spatial scales where suitable climate allows the species to spread, and where other factors may be influencing the expansion. We demonstrate our methodology by assessing the spread of invasive Sahara mustard in North America. We detect critical scales where its spread is limited (100–500 km) or unconstrained (5–50 km) by climatic variables. Using climate‐based models to assess the similarity of climate envelopes in its native and invaded range, we find that the climate in the invaded range generally predicts the native distribution, suggesting that either there has been little local adaptation to climate occurring since introduction or the biological interaction experienced in the invaded range has not driven the species to occupy climatic conditions much different from its native range. Our novel method can be broadly utilized in other studies to generate critical insights into the scale dependency of different ecological drivers that influence the spread and distribution limits, as well as to help parameterizing predictions of future spread, and thus inform management decisions.  相似文献   

2.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

3.
The monk parakeet (Myiopsitta monachus) is a successful invasive species that does not exhibit life history traits typically associated with colonizing species (e.g., high reproductive rate or long‐distance dispersal capacity). To investigate this apparent paradox, we examined individual and population genetic patterns of microsatellite loci at one native and two invasive sites. More specifically, we aimed at evaluating the role of propagule pressure, sexual monogamy and long‐distance dispersal in monk parakeet invasion success. Our results indicate little loss of genetic variation at invasive sites relative to the native site. We also found strong evidence for sexual monogamy from patterns of relatedness within sites, and no definite cases of extra‐pair paternity in either the native site sample or the examined invasive site. Taken together, these patterns directly and indirectly suggest that high propagule pressure has contributed to monk parakeet invasion success. In addition, we found evidence for frequent long‐distance dispersal at an invasive site (~100 km) that sharply contrasted with previous estimates of smaller dispersal distance made in the native range (~2 km), suggesting long‐range dispersal also contributes to the species’ spread within the United States. Overall, these results add to a growing body of literature pointing to the important role of propagule pressure in determining, and thus predicting, invasion success, especially for species whose life history traits are not typically associated with invasiveness.  相似文献   

4.
AIM: As accurate and up-to-date distribution data for plant species are rarely available, cumulative records over long periods of time are frequently used for mapping distributions, without taking into account that species do not persist in their historical localities forever. However, persistence is highly relevant in changing modern landscapes, especially for invasive species that dynamically spread in unstable human-made habitats. We studied how an invasive species, Heracleum mantegazzianum, persists at sites once colonized and how its ability to persist affects its distribution. LOCATION: The Czech Republic. METHODS: We visited 521 localities of H. mantegazzianum occurrence reported in the literature and herbaria to determine whether the species still occurs at these sites. By using G-tests and classification trees, we explored the roles of various factors affecting its persistence at a site. RESULTS: Of the total number of 521 historical sites at which the species has occurred since the end of the 19th century, it persists at only 124 (23.8%). The persistence rate differs with respect to habitat type and is highest in meadows and forest margins. Analysis using classification trees indicated that the factors that best explain persistence are: type of habitat (with meadow and forest margins over-represented); urbanity (with a higher persistence outside urban areas); proximity to the place of the species' introduction into the country; metapopulation connectivity; and distance to the nearest neighbouring population. MAIN CONCLUSIONS: The use of cumulative historical records as a measure of species distribution, which is common in invasion literature, can seriously overestimate the actual distribution of alien plant species with low persistence. In the case of alien species such as H. mantegazzanium, which is non-clonal and reproduces only by seed, estimates of distribution and spread based on historical data are informative about potentially suitable habitat but may be unreliable as indicators of current occurrence and invasion dynamics.  相似文献   

5.
Aim To determine if the temporal and spatial pattern of alien plant invasion and native plant expansion can be observed using 100 years of herbarium data from Oklahoma, USA, and to eliminate herbarium collection biases in such analyses. Location Oklahoma, USA. Methods Using herbarium records from the Oklahoma Vascular Plants Database from 1903 to 2004, we reconstructed the spatial and temporal collection history of two alien invasive taxa (Lonicera japonica and Tamarix spp.) and three native expansive species (Ambrosia psilostachya, Amphiachyris dracunculoides and Juniperus virginiana). To compare the overall collecting trend, groups of native non‐expansive taxa were selected as counterparts. We recorded the year of the first collection in each township in Oklahoma for all taxa. The cumulative number of occupied townships was log‐transformed, plotted against time and modelled with linear regression. The slope of the linear regression represented collection trend over time for the non‐expansive counterpart group. However, for the invasive and expansive species, the regression slope represented the collection effort plus the invasion or expansion rate. We calculated the proportion of invasive and expansive species to non‐expansive species by dividing the cumulative number of townships for each invasive or expansive species by the cumulative number of townships occupied by the counterpart group (proportion curve). Results Maps of the collection records of invasive and expansive taxa illustrated no discernible spatial invasion or expansion pattern. The slopes of the linear regression for alien invasive taxa were significantly steeper than those of their associated native non‐expansive counterparts, indicating an increase in abundance. Juniperus virginiana, L. japonica and Tamarix spp. exhibited one or more periods during which they were collected at a disproportionately higher rate than their native non‐expansive counterparts. Main conclusions Patterns of species invasion and expansion in Oklahoma were detected using techniques developed for regions with longer collecting plant histories. The proportion curve analysis eliminated some biases inherent in herbarium data by reducing the effect of collecting effort. Both the regression model and proportion curve analyses illustrate the temporal invasion patterns of alien invasive species. The native species did not show a clear expansion pattern. The information found in recently established herbaria may not be sensitive enough to detect the increase in abundance of native species.  相似文献   

6.
Sahara Mustard (Brassica tournefortii; hereafter mustard), an exotic plant species, has invaded habitats throughout the arid southwestern United States. Mustard has reached high densities across aeolian sand habitats of southwestern deserts, including five distinct sand habitats in the eastern Coachella Valley, California. We examined trends in ground-dwelling arthropod community structure concurrent with mustard invasion in 90 plots within those habitats from 2003 to 2011 (n = 773 plot·years). We expected arthropod communities to respond negatively to mustard invasion because previous work documented significant negative impacts of mustard on diversity and biomass of native plants, the primary resource base for many of the arthropods. Arthropod abundance and species richness declined during the study period while mustard cover increased, and arthropod metrics were negatively related to mustard cover across all plots. When controlling for non-target environmental correlates (e.g. perennial frequency and precipitation) and for potential factors that we suspected of mediating mustard effects (e.g. native cover and sand compaction), negative relationships with mustard remained statistically supported. Nevertheless, arthropod richness’s relationship decreased slightly in strength and significance suggesting that mechanistic pathways may be both direct (via habitat structure) and indirect (via native cover suppression and sand compaction). However, mechanistic pathways for mustard effects, particularly on arthropod abundance, remain unclear. Most arthropod taxa, including most detritivores, decreased through time and were negatively related to mustard cover. In contrast, many predators were positively related to mustard. In total, our study provides substantial evidence for a negative effect of Sahara mustard on the structure of a ground-dwelling arthropod community.  相似文献   

7.
Why some organisms become invasive when introduced into novel regions while others fail to even establish is a fundamental question in ecology. Barriers to success are expected to filter species at each stage along the invasion pathway. No study to date, however, has investigated how species traits associate with success from introduction to spread at a large spatial scale in any group. Using the largest data set of mammalian introductions at the global scale and recently developed phylogenetic comparative methods, we show that human‐mediated introductions considerably bias which species have the opportunity to become invasive, as highly productive mammals with longer reproductive lifespans are far more likely to be introduced. Subsequently, greater reproductive output and higher introduction effort are associated with success at both the establishment and spread stages. High productivity thus supports population growth and invasion success, with barriers at each invasion stage filtering species with progressively greater fecundity.  相似文献   

8.
Aim We aim to report what hyperspectral remote sensing can offer for invasion ecologists and review recent progress made in plant invasion research using hyperspectral remote sensing. Location United States. Methods We review the utility of hyperspectral remote sensing for detecting, mapping and predicting the spatial spread of invasive species. We cover a range of topics including the trade‐off between spatial and spectral resolutions and classification accuracy, the benefits of using time series to incorporate phenology in mapping species distribution, the potential of biochemical and physiological properties in hyperspectral spectral reflectance for tracking ecosystem changes caused by invasions, and the capacity of hyperspectral data as a valuable input for quantitative models developed for assessing the future spread of invasive species. Results Hyperspectral remote sensing holds great promise for invasion research. Spectral information provided by hyperspectral sensors can detect invaders at the species level across a range of community and ecosystem types. Furthermore, hyperspectral data can be used to assess habitat suitability and model the future spread of invasive species, thus providing timely information for invasion risk analysis. Main conclusions Our review suggests that hyperspectral remote sensing can effectively provide a baseline of invasive species distributions for future monitoring and control efforts. Furthermore, information on the spatial distribution of invasive species can help land managers to make long‐term constructive conservation plans for protecting and maintaining natural ecosystems.  相似文献   

9.
Phylogeographic studies are useful in reconstructing the history of species invasions, and in some instances can elucidate cryptic diversity of invading taxa. This can help in predicting or managing the spread of invasive species. Among terrestrial invasive species in North America, earthworms can have profound ecological effects. We are familiar with the centuries‐old invasions of European earthworms (Lumbricidae) and their impacts on nutrient cycling in soils. More recent invasions by Asian earthworms of the family Megascolecidae are less fully understood. We used data for two mitochondrial gene fragments, cytochrome oxidase I (COI) and 16S rRNA, to examine the relationships among populations of Asian earthworms in the megascolecid genus Amynthas in the northeast United States. Recent reports have indicated that one species in particular, Amynthas agrestis, is having detrimental effects in mixed forest ecosystems, and we were interested in understanding the invasion history for this species. We were surprised to discover three divergent mitochondrial lineages of Amynthas occurring sympatrically in upstate New York. Given the gap between intra‐ and inter‐lineage sequence divergences, we propose that these three lineages represent cryptic species of Amynthas, one of which is A. agrestis. For each of the three lineages of Amynthas, we observed shared haplotypes across broad geographic distances. This may reflect common origins for populations in each lineage, either by direct routes from native ranges or through post‐introduction spread by natural dispersal or human‐mediated transport within North America. Management efforts focused on horticultural imports from Asia, commercial nurseries within the USA, and on prohibition of bait disposal may help to reduce the further invasion success of Amynthas.  相似文献   

10.
Not all introduced (invasive) species in a region will spread from a single point of introduction. Long-distance dispersal or further introductions can obscure the pattern of spread, but the regional importance of such processes is difficult to gauge. These difficulties are further compounded when information on the multiple scale process of invasive species range expansion is reduced to one-dimensional estimates of spread (e.g. km yr−1). We therefore compared the results of two different metrics of range expansion: maximum linear rate of spread and accumulation of occupied grid squares (50 × 50 km) over time. An analysis of records for 54 species of introduced marine macrophytes in the Mediterranean and northeast Atlantic revealed cases where the invasion process was probably missed (e.g. Atlantic Bonnemaisonia hamifera) and suggested cases of secondary introductions or erratic jump dispersal (Dasysiphonia sp. and Womersleyella setacea). A majority of species analysed showed evidence for an accumulation of invaded sites without a clear invasion front. Estimates of spread rate are increasing for more recent introductions. The increase is greater than can be accounted for by temporally varying search effort and implies a historical increase in vector efficiency and/or a decreased resistance of native communities to invasion.  相似文献   

11.
Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.  相似文献   

12.
Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate‐induced expansions of invasive species. Long‐term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (= 582 sites, 12,878 individuals) with high‐resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long‐term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human‐mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.  相似文献   

13.
Positive interactions between exotic species may increase ecosystem‐level impacts and potentially facilitate the entry and spread of other exotic species. Invader‐facilitated invasion success—”secondary invasion”—is a key conceptual aspect of the well‐known invasional meltdown hypothesis, but remains poorly defined and empirically underexplored. Drawing from heuristic models and published empirical studies, we explore this form of “secondary invasion” and discuss the phenomenon within the recognized conceptual framework of the determinants of invasion success. The term “secondary invasion” has been used haphazardly in the literature to refer to multiple invasion phenomena, most of which have other more accepted titles. Our usage of the term secondary invasion is akin to “invader‐facilitated invasion,” which we define as the phenomenon in which the invasion success of one exotic species is contingent on the presence, influence, and impacts of one or more other exotic species. We present case studies of secondary invasion whereby primary invaders facilitate the entry or establishment of exotic species into communities where they were previously excluded from becoming invasive. Our synthesis, discussion, and conceptual framework of this type of secondary invasion provides a useful reference to better explain how invasive species can alter key properties of recipient ecosystems that can ultimately determine the invasion success of other species. This study increases our appreciation for complex interactions following invasion and highlights the impacts of invasive species themselves as possible determinants of invasion success. We anticipate that highlighting “secondary invasion” in this way will enable studies reporting similar phenomena to be identified and linked through consistent terminology.  相似文献   

14.
Species distribution models are a fundamental tool in ecology, conservation biology, and biogeography and typically identify potential species distributions using static phenomenological models. We demonstrate the importance of complementing these popular models with spatially explicit, dynamic mechanistic models that link potential and realized distributions. We develop general grid-based, pattern-oriented spread models incorporating three mechanisms--plant population growth, local dispersal, and long-distance dispersal--to predict broadscale spread patterns in heterogeneous landscapes. We use the model to examine the spread of the invasive Celastrus orbiculatus (Oriental bittersweet) by Sturnus vulgaris (European starling) across northeastern North America. We find excellent quantitative agreement with historical spread records over the last century that are critically linked to the geometry of heterogeneous landscapes and each of the explanatory mechanisms considered. Spread of bittersweet before 1960 was primarily driven by high growth rates in developed and agricultural landscapes, while subsequent spread was mediated by expansion into deciduous and coniferous forests. Large, continuous patches of coniferous forests may substantially impede invasion. The success of C. orbiculatus and its potential mutualism with S. vulgaris suggest troubling predictions for the spread of other invasive, fleshy-fruited plant species across northeastern North America.  相似文献   

15.
The rapid expansion of urban land across the globe presents new and numerous opportunities for invasive species to spread and flourish. Ecologists historically rejected urban ecosystems as important environments for ecology and evolution research but are beginning to recognize the importance of these systems in shaping the biology of invasion. Urbanization can aid the introduction, establishment, and spread of invaders, and these processes have substantial consequences on native species and ecosystems. Therefore, it is valuable to understand how urban areas influence populations at all stages in the invasion process. Population genetic tools are essential to explore the driving forces of invasive species dispersal, connectivity, and adaptation within cities. In this review, we synthesize current research about the influence of urban landscapes on invasion genetics dynamics. We conclude that urban areas are not only points of entry for many invasive species, they also facilitate population establishment, are pools for genetic diversity, and provide corridors for further spread both within and out of cities. We recommend the continued use of genetic studies to inform invasive species management and to understand the underlying ecological and evolutionary processes governing successful invasion.  相似文献   

16.
In facultatively asexual invasive species, an understanding of the origins and diversity of clones can reveal introduction and invasion pathways and inform management efforts. In this study, we use microsatellite and chloroplast DNA markers to infer clonal diversity of the Rubus fruticosus agg. invasion in the Western United States, determine the relationship of these clones to clones found in other exotic ranges, and determine the geographic and genetic origins of the invasive clones. We found two invasive clones in the Western United States, where the invasion had previously been thought to consist of a single asexual lineage. The most common clone was genetically identical to the microspecies R. armeniacus from the native range of Germany, while the second clone was identical to the microspecies R. anglocandicans in the invaded range of Australia and closely related to samples from the native ranges of England and Serbia. A third distinct clone was identified in a collection from the exotic range of Chile. Our results demonstrate that cryptic genetic diversity may be present in asexual invasions that are thought to be homogeneous. However, the asexual relationships between R. fruticosus agg. clones in the native and multiple exotic ranges indicate that preadaptation has played an important role in invasion success in this species aggregate.  相似文献   

17.
Biological invasions provide unique opportunities for studying life history trait changes over contemporary time scales. As spatial spread may be related to changes in parasite communities, several hypotheses (such as the evolution of increased competitive ability (EICA) or EICA‐refined hypotheses) suggest immune changes in invasive species along invasion gradients. Although native hosts may be subject to similar changes in parasite selection pressures, their immune responses have been rarely investigated in invasion contexts. In this study, we evaluated immune variations for invasive house mice Mus musculus domesticus, invasive black rats Rattus rattus and native rodents Mastomys erythroleucus and Mastomys natalensis along well‐characterised invasion gradients in Senegal. We focused on antibody‐mediated (natural antibodies and complement) and inflammatory (haptoglobin) responses. One invasion route was considered for each invasive species, and environmental conditions were recorded. Natural‐antibody mediated responses increased between sites of long‐established invasion and recently invaded sites only in house mice. Both invasive species exhibited higher inflammatory responses at the invasion front than in sites of long‐established invasion. The immune responses of native species did not change with the presence of invasive species. These patterns of immune variations do not support the EICA and EICA refined hypotheses, and they rather suggest a higher risk of exposure to parasites on the invasion front. Altogether, these results provide a first basis to further assess the role of immune changes in invasion success.  相似文献   

18.
We investigated the relative contribution of minimum residence time, growth habit, and history of invasiveness to the spread of exotic plants in Michigan and California. Our data include minimum residence time as estimated by earliest herbarium collection records, growth habit, and history of invasiveness for over 2000 records from two herbaria (MI = 943, CA = 1131). Our data support the hypothesis that minimum residence time is highly associated with landscape spread, explaining 39–44% of variation in the number of counties invaded. In contrast, growth habit and history of invasiveness explained a small fraction of variation in spread in California but not Michigan. Over the past 30 years exotic plant species frequently became established in Michigan and California (≥50 species per decade), suggesting that many more species will become invasive over time. There is an urgent need to develop effective policies for exotic plant management. In both states we found significant positive correlations between minimum residence time and species occurrence on state invasive plant lists. Further, we found historical information on the pest status of a plant species introduced into a similar environment to be relevant in determining landscape spread of exotic plants. We conclude that efforts to predict exotic species spread based on biological characteristics may have limited success, and instead endorse pest risk analysis for proposed new imports coupled with rapid detection and early response for unintended and unwanted introductions.  相似文献   

19.
Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental‐wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation‐by‐distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub‐sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap‐frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories.  相似文献   

20.
Understanding the origins and introduction pathways of invasive species is a fundamental issue for invasion biology, which is necessary for predicting and preventing future invasion. Once an invasive species is established in a new location, this location could serve as a stepping‐stone for further invasions. However, such “stepping‐stone” effect has not been widely investigated. Using the published literature and records, we compiled the first found locations of 127 top invasive species in China. Our study showed that the most common landing spots of these invasive species were Hong Kong (22 species) and Taiwan (20 species), which accounted for one‐third of the invasive species in China. Our analysis revealed that the invasive species in mainland China were more likely to transport from Hong Kong than Macau, a neighboring region with a similar area and colonial history. Similarly, more invasive species were also first landed on Taiwan than Hainan, a nearby island sharing similar climate conditions. Together, our findings indicate that Hong Kong and Taiwan are the most important stepping‐stones for invasive species to the mainland of China and suggesting that the increasing trade exchange of China's coastal ports constitutes a potential risk for the spread of more invasive species. We suppose that they would be the future stepping‐stones for invasive species to the mainland of China and these coastal ports regions where improved biosecurity is needed now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号