首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni   总被引:16,自引:0,他引:16  
Guinea pig eosinophil peroxidase (EPO) was capable of killing schistosomula of Schistosoma mansoni in vitro when combined with hydrogen peroxide and a halide. Killing was measured by 51Cr release, by microscopic evaluation of viability, and by reinfection experiments in mice. Parasite killing was dependent on each component of the EPO-H2O2-halide system, was completely inhibited by catalase and azide, and was partially inhibited by cyanide. The EPO-mediated system required 10(-4) M H2O2 and 10(-4) M iodide at pH 7.0, and the schistosomula were killed with exposure to this system of less than 30 min at 37 degrees C. At pH 6.0, the EPO-mediated system showed significant cidal activity with 10(-6) M iodide. Canine neutrophil peroxidase (myeloperoxidase [MPO]) was also able to kill schistosomula in vitro in the presence of 10(-4) M H2O2 and 10(-4) iodide at pH 7.0 and pH 6.0. Physiologic concentrations of chloride (0.1 M) could substitute for iodide at pH 7.0 and pH 6.0 as the halide cofactor; however, at pH 7.0, a higher concentration of enzyme was required. These findings with isolated enzyme systems are compatible with a role for peroxidase in the host defense against schistosomula.  相似文献   

2.
3.
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

4.
The wild-type anionic tobacco peroxidase and its Glu141Phe mutant have been expressed in Escherichia coli, and reactivated to yield active enzymes. A Glu141Phe substitution was made with the tobacco anionic peroxidase (TOP) to mimic neutral plant peroxidases, such as horseradish peroxidase (HRP). Both recombinant forms of tobacco peroxidase show extremely high activity in luminol oxidation with hydrogen peroxide, and thus, preserve the unique property of the native tobacco peroxidase, a superior chemiluminescent reagent. The chemiluminescent signal intensity for both recombinant forms of TOP is orders of magnitude higher than that for wild-type recombinant HRP. The substitution slightly increases TOP activity and stability in the reaction course, but has almost no effect on the optimal parameters of the reaction (pH, luminol and hydrogen peroxide concentrations) and calibration plot. Comparison of substrate specificity profiles for recombinant TOP and HRP demonstrates that Glu141 has no principal effect on the enzyme activity. It is not the presence of the negative charge at the haem edge, but the high redox potential of TOP Compounds I and II that provides high activity towards aromatic amines and aminophenols, and luminol in particular.  相似文献   

5.
Hydrogen peroxide formed during the course of the copper(II)-catalysed oxidation of cysteamine with oxygen was continuously determined by a peroxidase (POD)-catalysed luminol chemiluminescence (CL) method. Horseradish peroxidase (HRP), lactoperoxidase (LPO) and Arthromyces ramosus peroxidase (ARP) were used as a CL catalyst. The respective PODs gave specific CL intensity-time profiles. HRP caused a CL delay, and ARP gave a time-response curve which followed the production rate of H2O2. LPO gave only a weak CL flash which decayed promptly. These differences of CL response curves could be explained in terms of the different reactivities of PODs for superoxide anion and the different formation rate of luminol radicals in the peroxidation of luminol catalysed by POD.  相似文献   

6.
Cytochrome c catalyzed the oxidation of various electron donors in the presence of hydrogen peroxide (H2O2), including 2-2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 4-aminoantipyrine (4-AP), and luminol. With ferrocytochrome c, oxidation reactions were preceded by a lag phase corresponding to the H2O2-mediated oxidation of cytochrome c to the ferric state; no lag phase was observed with ferricytochrome c. However, brief preincubation of ferricytochrome c with H2O2 increased its catalytic activity prior to progressive inactivation and degradation. Superoxide (O2-) and hydroxyl radical (.OH) were not involved in this catalytic activity, since it was not sensitive to superoxide dismutase (SOD) or mannitol. Free iron released from the heme did not play a role in the oxidative reactions as concluded from the lack of effect of diethylenetriaminepentaacetic acid. Uric acid and tryptophan inhibited the oxidation of ABTS, stimulation of luminol chemiluminescence, and inactivation of cytochrome c. Our results are consistent with an initial activation of cytochrome c by H2O2 to a catalytically more active species in which a high oxidation state of an oxo-heme complex mediates the oxidative reactions. The lack of SOD effect on cytochrome c-catalyzed, H2O2-dependent luminol chemiluminescence supports a mechanism of chemiexcitation whereby a luminol endoperoxide is formed by direct reaction of H2O2 with an oxidized luminol molecule, either luminol radical or luminol diazoquinone.  相似文献   

7.
The wild-type anionic tobacco peroxidase and its Glu141Phe mutant have been expressed in Escherichia coli, and reactivated to yield active enzymes. A Glu141Phe substitution was made with the tobacco anionic peroxidase (TOP) to mimic neutral plant peroxidases, such as horseradish peroxidase (HRP). Both recombinant forms of tobacco peroxidase show extremely high activity in luminol oxidation with hydrogen peroxide, and thus, preserve the unique property of the native tobacco peroxidase, a superior chemiluminescent reagent. The chemiluminescent signal intensity for both recombinant forms of TOP is orders of magnitude higher than that for wild-type recombinant HRP. The substitution slightly increases TOP activity and stability in the reaction course, but has almost no effect on the optimal parameters of the reaction (pH, luminol and hydrogen peroxide concentrations) and calibration plot. Comparison of substrate specificity profiles for recombinant TOP and HRP demonstrates that Glu141 has no principal effect on the enzyme activity. It is not the presence of the negative charge at the haem edge, but the high redox potential of TOP Compounds I and II that provides high activity towards aromatic amines and aminophenols, and luminol in particular.  相似文献   

8.
The total rate of mitochondrial O2- production in the presence of NADH as substrate increased from 200 to 1340 pmol/min per axis between 2 and 30 h of imbibition. The activities of the enzymes involved in hydroperoxide metabolism, e.g., superoxide dismutase, catalase, peroxidase and glutathione and ascorbate peroxidases, markedly changed during the germination of soybean embryonic axes. Superoxide dismutase was the enzymatic activity affected the most during the initial stages of germination. Intracellular O2- steady-state concentration, calculated from the rate of O2- production and superoxide dismutase activity, showed a 2-fold increase from 2 x 10(-8) M to 4 x 10(-8) M in germination phase I, declined in phase II to 2 x 10(-8) M and remained constant over the rest of the incubation period. The reaction of H2O2 and luminol catalyzed by Co2+ was utilized to measure H2O2 diffused out of the soybean axes after 5 to 10 min of incubation. The catalase-sensitive luminol emission of diffusates prepared from axes previously imbibed from 2 to 30 h corresponded to a H2O2 intracellular steady-state concentration in the range of 0.3 to 0.9 microM. The activity of metal-containing antioxidant enzymes was determined in the extracellular fluid. Cell wall peroxidase activity increased from 10 to 300 mumol/min per mg protein and appears as a potentially important pathway for H2O2 utilization. Hydrogen peroxide metabolism in soybean embryonic axes during early inhibition appears to have the following main features: (a) mitochondrial membranes are the most important source of cytosolic O2- and H2O2; (b) H2O2 is regulated at a steady-state concentration of 0.3-0.9 microM; (c) catalase is the main enzyme in terms of H2O2 utilization; (d) H2O2 exo-diffusion is quantitatively important destiny of intracellular H2O2; and (e) extracellular peroxidase located at the cell wall affords an enzymatic system able to use diffused H2O2.  相似文献   

9.
Anionic sweet potato peroxidase (SPP; Ipomoea batatas) was shown to efficiently catalyse luminol oxidation by hydrogen peroxide, forming a long-term chemiluminescence (CL) signal. Like other anionic plant peroxidases, SPP is able to catalyse this enzymatic reaction efficiently in the absence of any enhancer. Maximum intensity produced in SPP-catalysed oxidation of luminol was detected at pH 7.8-7.9 to be lower than that characteristic of other peroxidases (8.4-8.6). Varying the concentrations of luminol, hydrogen peroxide and Tris buffer in the reaction medium, we determined favourable conditions for SPP catalysis (100 mmol/L Tris-HCl buffer, pH 7.8, containing 5 mmol/L hydrogen peroxide and 8 mmol/L luminol). The SPP detection limit in luminol oxidation was 1.0 x 10(-14) mol/L. High sensitivity in combination with the long-term CL signal and high stability is indicative of good promise for the application of SPP in CL enzyme immunoassay.  相似文献   

10.
The kinetics of peroxidase-dependent cooxidation for two substrate pairs [p-iodophenol + 4-aminoantipyrine (AAP) and p-iodophenol + luminol was studied both in the absence and presence of polyclonal antibodies (polyAB), three types of peroxidase-specific monoclonal antibodies (monoAB) and their double or triple mixtures in a wide range of H2O2 concentrations (0.01-10.0 mM). MonoAB 2C, 3E and 9D at concentrations of 0.05-500 nM inhibited the cooxidation of p-iodophenol + AAP at H2O2 concentration above 1.0 mM but activated the cooxidation of p-iodophenol + luminol. The double and triple mixtures of monoAB activated the cooxidation of p-iodophenol + AAP at the same H2O2 concentrations without any effect on the p-iodophenol + luminol cooxidation. PolyAB activated the cooxidation of p-iodophenol + AAP more effectively and only slightly activated (or inhibited) that of p-iodophenol + luminol. PolyAB diminished the values of rate constants for the interaction of the peroxidase active intermediates, E1 and E2, with p-iodophenol, AAP or luminol. Possible modes of monoAB and polyAB effects on the two substrate pair cooxidation are discussed.  相似文献   

11.
Isoenzyme c of horseradish peroxidase (HRP‐C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP‐C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP‐C, the JcGP1‐induced reaction was enhancer independent, which made the enzyme‐linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long‐term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long‐term stable CL signal combined with enhancer‐independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The formation of hydrogen peroxide in catholytes and anolytes of electrochemically activated solutions: bidistilled water and solutions of sodium chloride and nutrition medium M9 was studied. The concentration of hydrogen peroxide was determined by the method of enhanced chemiluminescence in a system peroxidase-luminol-p-iodophenol. It was shown that the concentration of hydrogen peroxide depends on the ionic content of the solution and varies from a few fractions of a micromole in catholytes of bidistilled water and sodium chloride solutions (10(-5) divided by 10(-2) M) to 20-25 microM in catholytes of medium M9. The concentration of H2O2 in anolytes of various solutions was 15-20 times lower than in the corresponding catholytes and was equal to a few nanomoles in bidistilled water and a few micromoles in medium M9. The biological activity of the catholyte of medium M9 was determined from changes in the growth of E. coli cells. It was found that this catholyte stimulates the cell growth. The stimulating effect was 20-25% and did not change after the decomposition of hydrogen peroxide in the catholyte by catalase. The addition of H2O2 at the corresponding concentration to the inactivated nutrient medium produced no stimulating effect. These data suggest that hydrogen peroxide formed in the catholyte of nutrient medium M9 does not affect its biological activity.  相似文献   

13.
Optimal conditions were found for the oxidation of luminol by hydrogen peroxide in the presence of peroxidase isolated from leaves of the African oil palm tree Elaeis guineensis (AOPTP). The pH range for maximal chemiluminescence intensity (8.3-8.6) is similar for AOPTP, horseradish, and Arthromyces ramosus peroxidases and slightly different from that for tobacco peroxidase (9.3). Increasing the buffer concentration decreases the chemiluminescence intensity. As in the case of other anionic peroxidases, the catalytic efficiency of AOPTP does not depend on the presence of enhancers (4-iodophenol and 4-hydroxycinnamic acid) in the reaction medium. The detectable limit of AOPTP assayed by luminol peroxidation is 2·10–12 M. The long-term chemiluminescence signal produced during AOPTP-dependent luminol peroxidation is a characteristic feature of the African oil palm enzyme. This feature in combination with its very high stability suggests that AOPTP will be a promising tool in analytical practice.  相似文献   

14.
过氧化物同工酶谱带染色条件的探讨   总被引:4,自引:0,他引:4  
研究了过氧化氢浓度在过氧化物同工酶电泳分析中对染色时间及酶带颜色深浅的影响,和相同的酶液在测定酶活性时过氧化氢浓度对测定结果的影响,以及两者之间的相关性。研究表明,过氧化氢的浓度在染色中对染色的时间和酶带的颜色深浅有明显的影响,在一定的范围内随着底物过氧化氢浓度的升高,酶的活性降低,染色时间变长,酶带颜色变浅。这种相关性与供氢体无关,它可指导酶带染色中过氧化氢的用量。  相似文献   

15.
Reactive oxygen species (ROS) are usually produced in rice under aerobic environmental conditions, resulting in peroxidative changes in polyunsaturated fatty acids, and affecting the deterioration of rice during storage. In addition, as an important enzyme that participates in removing ROS, peroxidase is also present in rice, and takes part in protecting rice from attack by ROS. Moreover, loss of peroxidase activity may give rise to rice deterioration during storage. Therefore, measuring peroxidase activity makes it possible to ascertain the freshness of rice. In addition, peroxidase can also catalyze the luminol–hydrogen peroxide system. Based on this, in this work we established a new chemiluminescence (CL) method that was used to detect the freshness of stored rice. Under optimal experimental conditions, we showed that the freshness of rice can be measured using this CL method. This study is the first to detect the freshness of rice using a CL method, opening up a novel direction for the application of CL.  相似文献   

16.
We studied oxidative stress and peroxidase activity resulting from application of excess copper in the nutrient medium on the roots of young bean seedlings. The change in H2O2 content, lipid peroxidation and antioxidant enzymes activities were quantified and located. Excess of copper caused a loss of membrane integrity and the formation of hydrogen peroxide (H2O2) as visualized in the transmission electron microscopy and measured using spectrophotometry. H2O2 accumulated in the intercellular spaces and in the cell wall. The production of H2O2 was accompanied by an increase in the activity of soluble and ionic GPX (guaiacol peroxidase, EC 1.11.17), CAPX (coniferyl alcohol peroxidase) and NADH oxidase.  相似文献   

17.
Conditions for the enhanced horseradish peroxidase (HRP) catalysed reaction between luminol and hydrogen peroxide were optimized to determine detection limits for HRP conjugated to antibody fragment (HRP-Fab) in solution phase. Light output was linear with respect to HRP-Fab concentration but became nonlinear at low HRP-Fab concentrations when an accelerator (enhancer) of the reaction was used. para-Phenylphenol was a more effective enhancer than p-iodophenol at HRP-Fab concentrations below 20 pmol/l. The detection limit for HRP-Fab was 1.2 femtomoles in the absence of p-phenylphenol and 0.08 femtomole in the presence of p-phenylphenol. The acceleration of peroxidase activity at the lowest HRP-Fab concentrations occurred after an incubation time period of up to five minutes. This lag time limited the sensitivity and the mechanism for it was sought. Preincubation experiment results indicated that the lag time phenomenon may involve a reversible alteration in HRP catalytic activity and that enhancer, peroxide, luminol and HRP-Fab had to be incubated together some time before maximum activation could occur.  相似文献   

18.
19.
Exposure of human fibroblasts (IMR-90) to cool-white fluorescent light causes chromatid breaks and exchanges. This chromatid damage is caused largely by the production of hydrogen peroxide (H2O2) since it can be prevented almost completely by the addition of catalase. In support of this conclusion, exogenous H2O2 is shown to induce chromatid breaks. The clastogenic amounts of H2O2 generated during light exposure are formed within the cell since cells illuminated in saline showed the same extent of damage as cells in culture medium. Addition of selenite to the cultures during light exposure significantly decreases the chromatid damage in a dose-related manner and may be necessary to maintain sufficient activity of glutathione peroxidase. The free hydroxyl radical, . OH, appears to be partially responsible for the light-induced chromatid damage. Of the free-radical scavengers tested, i.e., mannitol, vitamin E, and dimethyl sulfoxide, only mannitol, which scavenges . OH, significantly decreases the light-induced chromatid damage. Thus, both . OH and H2O2 formed within the cell during light exposure are agents that directly or indirectly cause chromatid damage.  相似文献   

20.
The effects of pH, luminol myeloperoxidase and hydrogen peroxide concentrations on the intensity of luminol chemiluminescence induced by myeloperoxidase catalysis were investigated. It was found that the intensity of luminescence is proportional to the enzyme concentration (up to 8.10(-8) M) and reaches the saturation level at higher enzyme concentrations. The dependence of chemiluminescence intensity on [H2O2] is bell-shaped: at H2O2 concentrations above 1.10(-4) M the luminescence is inhibited with a maximum at neutral values of pH. Luminol at concentrations above 5.10(-5) M inhibits this process. It was demonstrated that the effects of singlet oxygen, superoxide and hydroxyl radicals on the chemiluminescence reaction are insignificant. Luminol oxidation in the course of the myeloperoxidase reaction is induced by hypochlorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号