首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
We investigated CSF concentrations of nitrite and nitrate as indicators of nitric oxide (NO) production in patients with tetrahydrobiopterin (BH4) deficiencies. Patients with 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase and dihydropteridine reductase deficiencies exhibited decreased CSF nitrite + nitrate levels compared with healthy control subjects. Reduced levels of nitrite + nitrate were not influenced by oral administration of 2.5-5.0 mg/kg tetrahydrobiopterin. Our data indicate impaired NO synthase function in patients with BH4 deficiency and suggest possible involvement in the neuronal cell dysfunction.  相似文献   

2.
In this study, we investigated the role of nitric oxide metabolism and lipid peroxidation in patients with P. vivax malaria. The levels of nitrite and nitrate were analyzed using a procedure based on the Griess reaction and malondialdehyde levels which index of lipid peroxidation was determined by thiobarbituric acid reaction. The levels of nitrite/nitrate and malondialdehyde in patients were higher than controls and found to be statistically significant (p < 0.001). We performed this study to determine whether nitric oxide and lipid peroxidation is produced during blood-stage P. vivax malaria. This present study shows that lipid peroxidation occurs in P. vivax malaria. The levels of nitric oxide are associated with lipid peroxidation in this disease.  相似文献   

3.
Reactive oxygen and nitrogen species participate in the inflammatory process during meningitis. Among them, superoxide, nitric oxide (NO), and their reaction product peroxynitrite exert cytotoxic effects. Mercaptoethylguanidine (MEG) exerts beneficial effects in in vivo inflammatory conditions by scavenging peroxynitrite and inhibiting the inducible NO synthase. This study was designed to investigate whether MEG may attenuate inflammation and brain injury in experimental meningitis. Meningitis increased nitrite/nitrate, and protein content in the cerebrospinal fluid (CSF). In the brain tissue high levels of malondialdehyde and formation of nitrotyrosine indicated lipid peroxidation and nitrosative stress, respectively. Myeloperoxidase activity was increased indicating accumulation of neutrophils into the brain parenchyma. Treatment with MEG decreased nitrite/nitrate levels whereas it did not affect the bacterial clearance from the CSF. Furthermore, treatment with MEG markedly reduced brain tissue levels of myeloperoxidase and malondialdehyde. These data demonstrate that MEG could have a therapeutic role in meningitis.  相似文献   

4.
The correlation between the glutamate-glutamine cycle and nitric oxide (NO) production in the central nervous system (CNS) of a new type of influenza-associated encephalopathy in children is discussed. When measurements of several amino acids and NOx (nitrite/nitrate) levels in the cerebrospinal fluid (CSF) using HPLC-fluorescence and -UV methods, respectively, were made. the CSF glutamate levels of patients with the new type of encephalitis were significantly lower, and both glutamine and NOx levels were significantly higher than those of the control group and the patients of the meningitis group. Results indicate that the turnover rate of glutamate in CNS, particularly in the brain, increases in the influenza-associated encephalopathy. The high mortality in the disease may correlate with the hyperactivity of supra-spinal glutamate neurons and the subsequent high activity levels of NOx in CNS.  相似文献   

5.
Atopic dermatitis (AD) is a chronic inflammatory skin disease of unknown etiology. To examine the involvement of impaired homeostasis of oxygen/nitrogen radicals in childhood AD, we compared the levels of urinary 8-hydroxy-2'-deoxyguanosine (marker of oxidative stress), nitrite/nitrate (marker of nitric oxide synthesis) and selenium (marker of selenium store) in 27 children with AD to those of 25 healthy control children. Urinary 8-hydroxy-2'-deoxyguanosine was significantly higher and nitrite/nitrate levels were significantly lower in patients with AD than in the control. Urinary selenium levels were similar in both groups. Our findings suggest that impaired homeostasis of oxygen/nitrogen radicals and increased oxidative stress are involved in the pathophysiology of childhood AD, and indicate that suppression of oxidative stress might be a potentially useful strategy for the treatment of AD.  相似文献   

6.
AIMS: To examine the hypothesis of non-immune defence mechanisms based on nitrite. METHODS AND RESULTS: The acidified media (nutrient broth or citrate-phosphate buffer) under aerobic conditions with additions of physiological levels of nitrite, L-ascorbic acid, iodide and thiocyanate were used to simulate gastric juice. The bactericidal effects of acidified nitrite on Escherichia coli and lactobacilli were investigated using bacterial plate counts. Conversion of acidified nitrite to nitric oxide, nitrogen dioxide and nitrate was also studied. Nitrite significantly increased the bactericidal effects on E. coli and lactobacilli. The bactericidal effects were enhanced by thiocyanate but not by L-ascorbic acid and iodide. L-Ascorbic acid and thiocyanate, but not iodide, enhanced the decomposition of acidified nitrite in nutrient broth. Acidified nitrite was converted to both nitric oxide and nitrate, but a portion of the acidified nitrite in nutrient broth may have been converted to other unidentified nitrogen compounds. Nitrogen dioxide was not detected in any of the samples. CONCLUSION: The bactericidal effects of nitrite appeared to be primarily related to nitrous acid, and possibly to other unidentified nitrogenous metabolites, but not to nitric oxide and nitrogen dioxide. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential role of nitrite as an antimicrobial substance in the stomach may be of some importance in the ecology of the gastrointestinal tract and in host physiology.  相似文献   

7.
Subarachnoid hemorrhage (SAH) resulting from aneurysmal rupture is the major cause of nontraumatic SAH. We hypothesized that oxidative stress could be increased following aneurysmal SAH due to hemoglobin release and ischemia-reperfusion injury and that may further contribute to poor outcome. We collected plasma and cerebrospinal fluid (CSF) samples from 11 non-SAH controls and 15 aneurysmal SAH patients for up to 10 days after surgery and investigated status of oxidative stress in patients. Results showed that mean or peak levels of F(2)-isoprostanes (F(2)-IsoPs), a specific marker of lipid peroxidation, and total nitrate/nitrite, metabolites of nitric oxide and peroxynitrite, in CSF and plasma were significantly higher in SAH patients than in controls. First-day levels were also higher in CSF, but not in plasma, in SAH patients. Moreover, mean and peak levels of CSF F(2)-IsoPs were positively correlated with poor outcome or severity of clinical conditions in patients. Furthermore, levels of retinol, delta-tocopherol, beta+gamma-tocopherol, lutein, beta-carotene, and coenzyme Q(10) in plasma were significantly lower in SAH patients than in controls. Our results indicate that oxidative damage may play important roles in the severity and complications of aneurysmal SAH and suggest that means to suppress lipid peroxidation may be beneficial in improving the outcome of aneurysmal SAH.  相似文献   

8.
Increased expression of inducible nitric oxide synthase (NOS-2) in inflammatory diseases like uveitis suggests that it contributes to the observed pathological state. The aim of this study was to evaluate corneal expression of NOS-2 and corneal protein nitration in a rat model of uveitis. A single injection of intravitreal lipopolysaccharide was used to induce uveitis. Corneal proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by Coomassie blue staining. Expression of NOS-2 and nitrotyrosine (NO(2)Tyr) formation were determined via immunohistochemistry and Western blot analysis. Total nitrate/nitrite levels in the vitreous were measured by spectral analysis via the Griess reagent. Immunohistochemical analysis revealed increased corneal NOS-2 and NO(2)Tyr immunoreactivity in rats with uveitis compared with controls. NOS-2 and NO(2)Tyr immunoreactivity was observed in and around basal cells in the corneal epithelium. Western blot analysis of corneal lysates showed multiple nitrated protein bands in uveitic rats. Spectrophotometric measurement of total nitrate/nitrite levels in the vitreous affirmed significantly increased levels of nitric oxide generation in uveitis (126 +/-2.63 microM/mg protein) compared with controls (65 +/-6.57 microM/mg protein). The presented data suggests that extensive formation of protein nitration and reactive nitrogen species in the cornea contributes to tissue destruction in uveitis. Hence, selective inhibition of NOS-2 may prevent long-term complications and lead to an improvement in the management of uveitis.  相似文献   

9.
A method for the spectrophotometric determination of nitric oxide, nitrite, and nitrate in tissue culture media is presented. The method is based on the nitric oxide-mediated nitrosative modification of sulfanilic acid that reacts with N-(1-naphthyl)ethylenediamine dihydrochloride forming an orange-colored product absorbing at 496 nm. Nitric oxide levels were determined in culture media from this absorbance measurement using chemiluminescence standardization. Extinction coefficients of 5400 and 6600 M(-1) cm(-1) were determined for the nitric oxide product in assay solutions containing 0.1 or 100 mM KPO4 buffer (pH 7.4), respectively, with a limit of detection of 1 microM. Acidification of these reactions (pH 2.4) generated a pink-colored product absorbing at 540 nm allowing for quantitation of total nitric oxide/nitrite levels using extinction coefficients of 38,000 and 36,900 M(-1) cm(-1), for the assay solutions described. The limit of detection of this assay was approximately 300 nM. Using the 100 mM KPO4 buffer system, nitrate levels were determined following reduction to nitrite using a copper-coated cadmium reagent with an extinction coefficient of 29,500 M(-1) cm(-1) and a detection limit of 0.5 microM. The utility of these assays was demonstrated in the standardization of nitric oxide-saturated cell culture media, and the release of nitric oxide by the NONOate compound DEA/NO.  相似文献   

10.
Increases in brain quinolinic acid have been implicated in neurodegeneration and convulsions that may accompany infectious diseases. In three rhesus macaques (Macaca mulatta) with septicemia, both CSF and serum quinolinic acid concentrations were markedly elevated and were accompanied by increases in CSF kynurenic acid levels that were of a smaller magnitude. Elevated serum and CSF L-kynurenine concentrations also occurred and are consistent with activation of indoleamine-2,3-dioxygenase and increased substrate flux through the kynurenine pathway. Although it is probable that the marked increases in CSF quinolinic acid and kynurenic acid concentrations are reflected in the extracellular fluid space of brain, it remains to be determined whether the magnitude of such increases influences the activity of excitatory amino acid receptors in brain to produce excitotoxic pathology or noncytolytic disruption of functions mediated by excitatory amino acid receptors.  相似文献   

11.
Nitric oxide has been suggested to be involved in the regulation of fluid and nutrient homeostasis. In the present investigation, vasopressin and nitric oxide metabolite (nitrite and nitrate) levels were determined in plasma of male Wistar rats submitted to water or food deprivation for three days. Hematocrit and plasma sodium showed marked increase in dehydrated and starved rats. Potassium levels and plasma volume decreased in both treated groups. Plasma osmolality and vasopressin levels were significantly elevated in water deprived (362.8 +/- 7.1 mOsm/kg H2O, 17.3 +/- 2.7 pg/ml, respectively, p < 0.001) rats, but not in food deprived (339.9 +/- 5.0, 1.34 +/- 0.28) rats, compared to the controls (326.1 +/- 4.1, 1.47 +/- 0.32). The alterations observed in plasma vasopressin levels were related to plasma osmolality rather than plasma volume. Plasma levels of nitrite and nitrate were markedly increased in both water and food deprived rats (respectively, 2.19 +/- 0.29 mg/l and 2.22 +/- 0.17 mg/l versus 1.33 +/- 0.19 mg/l, both p < 0.01). There was a significant negative correlation between plasma nitrite and nitrate concentration and plasma volume. These results suggest that both dehydration and starvation increase plasma nitric oxide, probably by activation of nitric oxide synthases. The release of nitric oxide may participate in the regulation of the alteration in blood flow, fluid and nutrient metabolism caused by water deprivation or starvation.  相似文献   

12.
13.
Increased oxidative stress has been implicated in pathogenesis of serious diseases in neonates. We measured urinary levels of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative DNA damage), acrolein-lysine adduct (a marker of lipid peroxidation and oxidative protein damage), and nitrite/nitrate (a marker of endogenous nitric oxide formation) in one-month-old neonates to examine the status of oxidative stress and its relationship to the degree of prematurity and clinical condition in neonates. Study subjects comprised three groups: healthy term neonates, clinically stable preterm neonates requiring no supplemental oxygen, and clinically sick preterm neonates requiring supplemental oxygen and ventilator support. Urinary levels of 8-hydroxy-2'-deoxyguanosine and acrolein-lysine adduct were significantly higher in sick preterm neonates than those of stable preterm and healthy term neonates. In the sick preterm group, neonates developing active retinopathy showed significantly higher levels of acrolein-lysine adduct than the other neonates without retinopathy. There were no significant differences in both urinary markers of oxidative stress between stable preterm and healthy term neonates. The urinary nitrite/nitrate levels were not significantly different among the three groups, suggesting no difference in endogenous nitric oxide formation. Collectively, these results provide evidence of augmentation of oxidative damage to DNA, lipids and proteins, especially in clinically sick preterm neonates.  相似文献   

14.
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages.  相似文献   

15.
《Free radical research》2013,47(12):1419-1430
Several events occurring during the secondary damage of traumatic brain injury (TBI) can cause oxidative stress. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs) are specific lipid peroxidation markers generated from arachidonic acid and docosahexaenoic acid, respectively. In this study, we evaluated oxidative stress in patients with moderate and severe TBI. Since sedatives are routinely used to treat TBI patients and propofol has been considered an antioxidant, TBI patients were randomly treated with propofol or midazolam for 72 h postoperation. We postoperatively collected cerebrospinal fluid (CSF) and plasma from 15 TBI patients for 6–10 d and a single specimen of CSF or plasma from 11 controls. Compared with the controls, the TBI patients exhibited elevated levels of F2-IsoPs and F4-NPs in CSF throughout the postsurgery period regardless of the sedative used. Compared with the group of patients who received midazolam, those who received propofol exhibited markedly augmented levels of plasma F2-IsoPs, which were associated with higher F4-NPs levels and lower total nitrate/nitrite levels in CSF early in the postsurgery period. Furthermore, the higher CSF F2-IsoPs levels correlated with 6-month and 12-month worse outcomes, which were graded according to the Glasgow Outcome Scale. The results demonstrate enhanced oxidative damage in the brain of TBI patients and the association of higher CSF levels of F2-IsoPs with a poor outcome. Moreover, propofol treatment might promote lipid peroxidation in the circulation, despite possibly suppressing nitric oxide or peroxynitrite levels in CSF, because of the increased loading of the lipid components from the propofol infusion.  相似文献   

16.
Nitrite and nitrate levels in physiological fluids are commonly used as an index of nitric oxide production. We developed simple and rapid method for the determination of these anions by capillary zone electrophoresis employing borate buffer (pH 10, 100 mmol/l) as running electrolyte. The anions were analyzed in plasma and cerebrospinal fluid (CSF) without deproteinization of the samples. Electrophoresis was carried out in a capillary (36.5 cm×75 μm) at a potential of 15 kV, with on-column UV detection at 214 nm. Mean retention times for nitrite and nitrates were 4.631 and 5.152 min, respectively. The method was linear (r=0.999) within a 1–500 μmol/l concentration range. Physiological levels of nitrate in plasma (40.2 μmol/l) and CSF (15.3 μmol/l) could be determined with good precision (coefficients of variation <6%) and accuracy (recoveries of added nitrate to plasma and CSF were 97.4 and 104.5%, respectively). Measurements of the physiological levels of nitrite in plasma (6.1 μmol/l) and CSF (0.9 μmol/l) were less precise and accurate.  相似文献   

17.
《Free radical research》2013,47(12):1425-1434
Abstract

Excessive flux of free fatty acids (FFA) into the liver contributes to liver impairment in non-alcoholic fatty liver disease (NAFLD). It remains unclear how FFA contribute to impairment of hepatocytes. This study treated hepatocytes with linoleic acid and palmitate to investigate the early event triggering FFA-mediated impairment. It determined cell viability, content of nitrite/nitrate and triacylglycerides (TG), inducible nitric oxide synthase (iNOS) protein, oxidation of cardiolipin (CL) as well as formation of F2-isoprostanes in the presence of insulin and glucose. Linoleic acid caused significant decrease in cell viability. It is shown that palmitate caused induction of iNOS resulting in increased nitrite/nitrate concentration and slight increase in TG content. Linoleic acid led to a decrease in nitrite/nitrate concentration parallelled by massive TG accumulation in combination with increased oxidation of CL and increased F2-isoprostane levels. It is concluded that nitric oxide (NO) concentration regulates FFA-dependent TG accumulation and oxidative stress in rat hepatocytes.  相似文献   

18.
Neopterin is a sensitive marker for diseases involving increased activity of the cellular immune system in humans. Many studies, however, provide evidence for neopterin not only as a marker, but also for its characteristic effects. Recently, we were able to demonstrate a considerable influence of exogenous neopterin at a concentration of 100 mumol/l on cardiac performance in the Langendorff model of isolated perfused rat hearts. The present study was designed to investigate its possible mechanism. During co-infusion of neopterin at a concentration of 100 mumol/l with the unspecific nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine monoacetate, the nitric oxide donor PAPA NONOate, the free radical scavenger N-acetylcysteine, or the pro-inflammatory cytokine tumor necrosis factor-alpha the effects on cardiac contractility parameters and coronary vascular resistance were studied in 67 male Sprague-Dawley rats. The temperature-controlled and pressure-constant Langendorff apparatus was used with retrograde perfusion of the aorta and a Krebs-Henseleit buffer. Neither the unspecific nitric oxide synthase inhibitor nor the nitric oxide donor excludes nitric oxide from playing a mechanistic role in our perfusion studies. Tumor necrosis factor-alpha was without any synergistic or antagonistic effects when co-treated with neopterin. N-acetylcysteine was most effective in abolishing neopterin-dependent effects on cardiac function. The negative effects of neopterin on cardiac performance might be due to an enhancement of oxidative stress by neopterin that can be attenuated by the antioxidant N-acetylcysteine. Neopterin has to be considered a pathogenic factor in the development of cardiac dysfunction in chronic disease states with high neopterin levels secondary to activation of the immune system.  相似文献   

19.
Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10 mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.  相似文献   

20.
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号