首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Genetic linkage studies were performed in 22 families with von Hippel-Lindau (VHL) disease by using polymorphic DNA markers from distal chromosome 3p. Linkage was detected between VHL disease and the markers D3S18 (Zmax = 6.6 at theta = 0.0, confidence interval (CI) 0.00-0.06), RAF1 (Zmax = 5.9 at theta = 0.06, CI 0.01-0.16), and THRB (Zmax 3.4 at theta = 0.11). Multipoint linkage analysis localized the VHL disease gene within a small region (approximately 8 cM) of 3p25-p26 between RAF1 and (D3S191, D3S225) and close to the D3S18 locus. There was no evidence of locus heterogeneity, and families with and without pheochromocytoma showed linkage to D3S18. The identification of DNA markers flanking the VHL disease gene allows reliable presymptomatic and prenatal diagnosis to be offered to informative families.  相似文献   

2.
Summary As part of an attempt to locate the von Hippel-Lindau locus (VHL) on chromosome 3, we evaluated 41 families with von Hippel-Lindau disease from the United States and Canada. One large family was identified whose disease phenotype was distinct from typical VHL. The most common disease manifestation was pheochromocytoma occuring in 57% (27/47) of affected family members. Few (4/47) affected family members had symptomatic spinal or cerebellar hemangioblastomas; no affected family member had renal cell carcinoma (0/47) or pancreatic cysts (0/24). Previously, genetic analysis demonstrated that the disease manifestations in this family were linked to RAF1 and D3S18, markers shown to be linked to typical VHL. These results suggest that there are mutant alleles at the VHL locus associated with distinct tissue specificities.  相似文献   

3.
As part of our effort to isolate and characterise the von Hippel-Lindau (VHL) disease gene, we constructed a physical map of chromosome 3p25-26 by fluorescence in situ hybridisation (FISH) studies on a panel of cytogenetic rearrangements involving this region. Biotinylated cosmid and lambda probes were hybridised to metaphase chromosome spreads and positioned with respect to each cytogenetic breakpoint. These studies unequivocally established the order of five loci linked to the VHL disease gene: cen-(RAF1,312)-D3S732-D3S1250-D3S601-D3S18-pter and determined the position of three other probes within this map. These results ordered RAF1 and D3S732 for the first time, confirmed the localisation of D3S1250 between RAF1 and D3S601 and determined the position of D3S651 with respect to other chromosome 3p25-p26 loci. The establishment of an ordered set of cytogenetic aberrations will enable the rapid assignment of polymorphic and nonpolymorphic cloned sequences within the chromosome region 3p25-p26.  相似文献   

4.
Confirmation of linkage in von Hippel-Lindau disease   总被引:3,自引:0,他引:3  
Von Hippel-Lindau (VHL) disease was initially reported to be linked to the RAF1 oncogene (3p25). We have ascertained and sampled two large multigenerational VHL families for linkage studies, in order to confirm the localization of the VHL gene as a prelude to fine mapping studies. The probes used in the analysis were p627 (RAF1) and pHeA12 (thyroid hormone receptor B) (3p24.1-3p22). VHL was analyzed as an autosomal dominant trait with age-dependent penetrance. The maximum lod score combining both families was z(theta) = 2.16 at theta = 0.0 for RAF1 and z(theta) = 2.20 at theta = 0.05 for thyroid hormone receptor B. Multipoint analysis using the RAF1 and thyroid hormone receptor B loci resulted in a peak lod score of 3.1 confirming linkage of VHL to this region of chromosome 3. However, the position of VHL relative to the two loci could not be established with certainty.  相似文献   

5.
Von Hippel-Lindau disease is a heritable tumour syndrome caused by the loss of the function of a tumour suppressor gene on the short arm of human chromosome 3. The interval RAF1-D3S18 (3p25–3p26) has been identfied by genetic linkage studies to harbour the von Hippel-Lindau gene. We have constructed a long range restriction map of this region and have succeeded in demonstrating the physical linkage of loci D3S726 (DNA probe LIB31-38), D3S18 (c-LIB-1, L162E5), D3S601 (LIB1963) and D3S587 (LIB 12–48). Since multipoint analysis has located D3S601 proximal to D3S726, the physical map should be oriented with D3S726 towards the telomere. The order and distances of probes within the von Hippel-Lindau gene region is as follows: telomere — LIB3138 — (<280 kb) — c-LIB-1 — (overlapping) — L162E5 — (900–1600 kb) — (LIB 19-63, LIB 12–48) — centromere. In tissues that included blood, semen and Epstein-Barrvirus-transformed lymphocytes, we detected a putative CpG island flanking D3S18.  相似文献   

6.
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia-associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in Vhl(R200W/R200W) knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.  相似文献   

7.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

8.
VHL综合征(von Hippel-Lindau syndrome,VHL;MIM 193300)是一种常染色体显性遗传的多系统肿瘤综合征,最常见临床表现是视网膜或中枢神经系统(central nervous system,CNS)血管母细胞瘤.CNS血管母细胞瘤和肾细胞癌(renal cell carcinoma,RCC)的并发症是VHL患者最主要的死因.VHL综合征主要因VHL基因(the vonHipple-Lindau gene,VHL)突变所致,细胞周期素D1基因(the cyclin D1 gene,CCND1)突变和蛋白异常也可能参与其发生.目前已建立了多个VHL基因缺陷动物模型.在此就VHL综合征的遗传学研究进展作一概述.  相似文献   

9.
Inheritance of chromosomes 3 and 11 in the families with Chuvash autosomal recessive polycythemia and in control group with no disease symptoms was examined using polymorphic dinucleotide markers D3S1597 and D3S1263, mapped to region 3p25, and D11S4111, D11S4127, and D11S1356, mapped to region 11q23. All patients were homozygous for the C598T mutation in the VHL gene (3p25). The analysis showed that in 75% of the cases, chromosome 3 carrying C598T mutation was coinherited with certain chromosome 11, which differed from 50%, expected upon independent inheritance of each chromosome. In case of chromosome 3 without C598T mutation, this pattern was observed neither in healthy sibs form the families with autosomal recessive polycythemia (44%), nor in the control group (43%). These results suggest that in case of the C598T mutation in the VHL gene, chromosomal loci 3p25 and 11q23 are inherited not independently, compared to the inheritance of these loci in the absence of the mutation in healthy sibs from the affected families (chi2 = 16.14; P < 0.001), and also in the control family sample (chi2 = 17.91; P < 0.001).  相似文献   

10.
von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome predisposing to retinal, cerebellar and spinal hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic tumors. Clinically two types of the disease can be distinguished: VHL type 1 (without pheochromocytoma) and VHL type 2 (with pheochromocytoma). We report VHL germline mutations and trends in phenotypic variation in families from central Europe. We identified 28 mutations in 53/65 (81.5%) families with 18 (64%) mutations being unique to this population. Whereas types and distribution of mutations as well as a strong correlation of missense mutations with the VHL 2 phenotype were similar to those identified in other populations, these families have provided new insights into the molecular basis for variability in the VHL 2 phenotype. Seven different missense mutations in exons 1 and 3 varied in their biological consequences from a minimal VHL 2 phenotype with pheochromocytoma only to a full VHL 2 phenotype with RCC and pancreatic lesion. These findings contribute to a better understanding of the fundamental mechanisms of VHL disease and its phenotypic variability. Further, we have provided rapid VHL screening for the families in central Europe, which has resulted in improved diagnosis and clinical management. Received: 10 November 1995 / Revised: 1 March 1996  相似文献   

11.
The gene for autosomal dominant polycystic kidney disease (PKD1) is located on chromosome 16p, between the flanking markers D16S84 and D16S125 (26.6prox). This region is 750 kb long and has been cloned. We have looked at the association of 10 polymorphic markers from the region, with the disease and with each other. This was done in a set of Scottish families that had previously shown association with D16S94, a marker proximal to the PKD1 region. We report significant association between two CA repeat markers and the disease but have not found evidence for a single founder haplotype in these families, indicating the presence of several mutations in this population. Our results favor a location of the PKD1 gene in the proximal part of the candidate region.  相似文献   

12.
von Hippel-Lindau disease (VHL [MIM 193300]) is a heritable autosomal dominant multiple-neoplastic disorder with high penetrance. It is characterized by brain and spinal-cord hemangioblastomas, retinal angiomas, clear-cell renal carcinoma, neuroendocrine tumors and cysts of the pancreas, pheochromocytomas, endolymphatic-sac tumors, and papillary cystadenomas of the epididymis and broad ligament. Although most index cases have a positive family history of VHL, some do not and may represent de novo cases. Cases without a family history of VHL may or may not have a germline mutation in their VHL tumor-suppressor gene. We present two cases of VHL mosaicism. In each of two families, standard testing methods (Southern blot analysis and direct sequencing) identified the germline mutation in the VHL gene of the offspring, but not in their clinically affected parent. Additional methods of analysis of the affected parents' blood detected the VHL-gene mutation in a portion of their peripheral blood lymphocytes. In one case, detection of the deleted allele was by FISH, and, in the second case, the 3-bp deletion was detected by conformational sensitive gel electrophoresis and DNA sequencing of cloned genomic DNA. Mosaicism in VHL is important to search for and recognize when an individual without a family history of VHL has VHL. Patients diagnosed without family histories of the disease have been reported in as many as 23% of kindreds with VHL. Identification of individuals potentially mosaic for VHL will affect counseling of families, and these individuals should themselves be included in clinical screening programs for occult disease.  相似文献   

13.
Von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome characterized by predisposition for bilateral and multi-centric hemangioblastoma in the retina and central nervous system, pheochromocytoma, renal cell carcinoma, and cysts in the kidney, pancreas, and epididymis. We describe five families for which direct sequencing of the coding region of the VHL gene had failed to identify the family-specific mutation. Further molecular analysis revealed deletions involving the VHL gene in each of these families. In four families, partial deletions of one or more exons were detected by Southern blot analysis. In the fifth family, FISH analysis demonstrated the deletion of the entire VHL gene. Our results show that (quantitative) Southern blot analysis is a sensitive method for detecting germline deletions of the VHL gene and should be implemented in routine DNA diagnosis for VHL disease. Our data support the previously established observation that families with a germline deletion have a low risk for pheochromocytoma. Further unraveling of genotype-phenotype correlations in VHL disease has revealed that families with a full or partial deletion of the VHL gene exhibit a phenotype with a preponderance of central nervous system hemangioblastoma.  相似文献   

14.
Severe combined immunodeficiency disease (SCID) consists of a group of heterogeneous genetic disorders. The most severe phenotype, T-B- SCID, is inherited as an autosomal recessive trait and is characterized by a profound deficiency of both T cell and B cell immunity. There is a uniquely high frequency of T-B- SCID among Athabascan-speaking Native Americans (A-SCID). To localize the A-SCID gene, we conducted a genomewide search, using linkage analysis of approximately 300 microsatellite markers in 14 affected Athabascan-speaking Native American families. We obtained conclusive evidence for linkage of the A-SCID locus to markers on chromosome 10p. The maximum pairwise LOD scores 4.53 and 4.60 were obtained from two adjacent markers, D10S191 and D10S1653, respectively, at a recombination fraction of straight theta=.00. Recombination events placed the gene in an interval of approximately 6.5 cM flanked by D10S1664 and D10S674. Multipoint analysis positioned the gene for the A-SCID phenotype between D10S191 and D10S1653, with a peak LOD score of 5.10 at D10S191. Strong linkage disequilibrium was found in five linked markers spanning approximately 6.5 cM in the candidate region, suggesting a founder effect with an ancestral mutation that occurred sometime before 1300 A.D.  相似文献   

15.
Haplotype studies in Wilson disease.   总被引:9,自引:6,他引:3       下载免费PDF全文
In 51 families with Wilson disease, we have studied DNA haplotypes of dinucleotide repeat polymorphisms (CA repeats) in the 13q14.3 region, to examine these markers for association with the Wilson disease gene (WND). In addition to a marker (D13S133) described elsewhere, we have developed three new highly polymorphic markers (D13S314, D13S315, and D13S316) close to the WND locus. We have examined the distribution of marker alleles at the loci studied and have found that D13S314, D13S133, and D13S316 each show nonrandom distribution on chromosomes carrying the WND mutation. We have studied haplotypes of these three markers and have found that there are highly significant differences between WND and normal haplotypes in northern European families. These findings have important implications for mutation detection and molecular diagnosis in families with Wilson disease.  相似文献   

16.
17.
Dominant optic atrophy, type Kjer, is an autosomal dominant eye disease that is characterized by progressive optic atrophy with onset in early childhood, decrease of visual acuity, colour vision defects and centrocecal scotoma. By examination of 5 Danish families and the use of polymorphic markers, we have refined the localization of the OPA1 locus and assigned it to a 1.4-cM interval on chromosome 3q28-3q29, between markers D3S3669 and D3S3562. This localizes the gene on a 3-Mb YAC contig covering the disease locus. We have also located a possible candidate gene HRY to this contig. Received: 1 April 1996 / Revised: 8 August 1996  相似文献   

18.
The von Hippel-Lindau tumor suppressor gene   总被引:15,自引:0,他引:15  
  相似文献   

19.
von Hippel-Lindau (VHL) disease is a pleioropic disorder featuring a variety of malignant and benign tumors of the eye, central nervous system, kidney, and adrenal gland. Recently the VHL gene has been identified in the chromosomal region 3p25-26. Prognosis and successful management of VHL patients and their descendants depend on unambiguous diagnosis. Due to recurrent hemangioblastomas, a 29-year-old patient without familial history of VHL disease was diagnosed to be at risk for the disease. Histopathological examination of a small renal mass identified a clear cell tumor with a G1 grading. Genetic characterization of the germline and of the renal tumor was performed. Polymerase chain reaction/single strand conformation polymorphism (PCR/SSCP) analysis with primers from the VHL gene identified a deletion of a single nucleotide in exon 2 in the patient's germline and in the tumor, but not in the DNA of his parents. This deletion therefore must be a de novo mutation. Comparative genome hybridization (CGH) and fluorescence in situ hybridization (FISH) analysis of the G1 tumor with differentially labelled yeast artifical chromosome (YAC) clones showed loss of 3p and of the 3p26 signals, respectively. In conclusion, we identified a de novo germline mutation in the VHL gene of a young patient and a somatic chromosome 3p loss at the homologous chromosome 3 in his renal tumor. Our results suggest a recessive mode of inactivation of the VHL gene, providing solid evidence for its tumor-suppressor gene characteristics. Our data show the diagnostic potential of genetic testing, especially in patients without VHL family history. Furthermore, the findings of homozygous inactivation of the VHL gene in a G1 tumor support the notion that the inactivation of the VHL gene is an early event in tumorigenesis of renal cell carcinoma.  相似文献   

20.
von Hippel-Lindau disease (VHL) is a dominantly inherited familial cancer syndrome predisposing to ocular and CNS hemangioblastomas, renal-cell carcinoma (RCC), and pheochromocytoma. Both interfamilial and intrafamilial variability in expression is well recognized. Interfamilial differences in pheochromocytoma susceptibility have been attributed to allelic heterogeneity such that specific missense germ-line mutations confer a high risk for this complication. However, in most cases, tumor susceptibility does not appear to be influenced by the type of underlying VHL mutation. To probe the causes of phenotypic variation, we examined 183 individuals with germ-line VHL gene mutations, for the presence and number of ocular tumors. The prevalence of ocular angiomatosis did not increase with age, and the distribution of these tumors in gene carriers was significantly different than the expected stochastic distributions. Individuals with ocular hemangioblastomas had a significantly increased incidence of cerebellar hemangioblastoma and RCC (hazard ratios 2.3 and 4.0, respectively). The number of ocular tumors was significantly correlated in individuals of 12 degree relatedness but not in more distantly related individuals. These findings suggest that the development of VHL ocular tumors is determined at an early age and is influenced by genetic and/or environmental modifier effects that act at multiple sites. Functional polymorphisms in the glutathione-S-transferase M1 gene (GSTM1) or the cytochrome P450 2D6 gene (CYP2D6) did not show a significant association with the severity of ocular or renal involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号