首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Boddington  C.L.  Dodd  J.C. 《Plant and Soil》2000,218(1-2):145-157
Two glasshouse experiments were performed to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on Desmodium ovalifolium L. plants. In the first experiment the effect of disturbance of a pre-established extra-radical mycelium (ERM) was studied. In the second experiment the effect of phosphate addition as either organic matter (OM) or fertiliser was studied. Disturbance of a pre-established ERM reduced the formation of mycorrhizas by Gigaspora rosea (BEG111) and increased that by Glomus manihotis (BEG112) on D. ovalifolium plants. Acaulospora tuberculata (BEG41) failed to form mycorrhizas in the experiment. Either Gi. rosea (BEG111) or G. manihotis (BEG112) appeared to be the major component of the colonisation resulting from treatments with combinations of two or three of the AMF and determined the sensitivity of these treatments to disturbance of a pre-established ERM. The addition of phosphate fertiliser (10 mg P kg-1) reduced mycorrhiza formation by each species of AMF compared with the addition of OM (10 mg P kg-1). This work indicates that AMF from different genera respond differently to management by agricultural practices when in association with a tropical legume. Clearly, there is potential to alter the formation of mycorrhizas of AMF from different genera, through the use of agricultural practices. The significance of the development and metabolic activity of mycorrhizas formed by AMF from different genera for plant growth is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A glasshouse experiment was done to assess the development and phosphate metabolism of mycorrhizas formed by species of arbuscular mycorrhizal fungi (AMF) from two different genera, Gigaspora and Glomus on Desmodium ovalifolium plants at three concentrations of a phosphate source. The addition of phosphate (0–100 mg P kg−1) had no effect on the alkaline phosphatase activity, stained histochemically, in the intra-radical mycelium of Gigaspora rosea (BEG111), but decreased that of Glomus manihotis (BEG112) over a 10-wk period. The alkaline phosphatase activity of the extra-radical mycelium was unaffected by increasing phosphate addition (0–100 mg P kg−1) in both species of AMF over a 10-wk period. The extra-radical mycelium of Gi. rosea (BEG111) accumulated polyphosphate, determined by staining with 4',6-diamidino-2-phenylindole, whereas polyphosphate was not detected in the extra-radical mycelium of G. manihotis (BEG112). This work indicates differences in the mechanisms of phosphate metabolism in the mycelium of AMF from different genera on a tropical host. This might be determined by the life-cycle strategies of these fungi, in particular the formation of auxiliary cells in Gigaspora . The possibility of a negative-feedback mechanism between alkaline phosphatase and polyphosphate in the extra-radical mycelium of Gi. rosea (BEG111) and the role of polyphosphate in the symbiosis are discussed.  相似文献   

3.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

4.
Boddington  C.L.  Dodd  J.C. 《Plant and Soil》2000,218(1-2):137-144
Two pre-established agricultural field trials were assessed for the abundance of arbuscular mycorrhizal fungi (AMF) in the soil (density of spores, species richness and lengths of extra-radical mycelium [ERM]) in association with one of three tropical plant species (Gliricidia sepium, Peltophorum dasyrachis and Zea mays). The trials were managed by one of three agricultural practices: soil disturbance in a monoculture system, a root barrier to prevent interactions between plants in an agroforestry system or the addition of organic matter (OM) in an agroforestry and a monoculture system. The lengths of ERM of AMF in the soil were greater in the agroforestry system than the monoculture system. These were greater when a root barrier was present, but decreased when OM was added. Soil disturbance reduced the density of spores, species richness and the lengths of ERM of AMF compared with the undisturbed soil. This work indicates that agricultural trials may provide a useful tool to monitor the abundance of AMF in the field. Clearly, there is potential to increase the abundance of AMF, from different genera, in the soil through the management of agricultural practices. The significance of the abundance of AMF for subsequent benefits to plant growth and development and ultimately the sustainability of tropical agro-ecosystems are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.

Background and aims

Arbuscular mycorrhizal fungi (AMF) appear differentially represented among propagule forms [intraradical mycelium (IRM) in colonized roots, spores and extraradical mycelium (ERM)]. However, spring to autumn changes in the AMF communities harboured in the different propagule forms has not been studied, being this the aim of the present study.

Methods

A terminal restriction fragment length polymorphism approach was used to monitor, in spring and autumn, the AMF community composition present in the three propagule types associated to five shrub species in a semi-arid Mediterranean environment.

Results

The AMF community composition in roots was significantly different between spring and autumn; however, no significant differences were detected in soil propagules (spores and ERM). Different trends were identified according to the preferential biomass allocation patterns of AMF phylotypes, suggesting different life strategies: those allocating mainly into IRM (belonging to the Glomeraceae), ERM (Diversisporaceae and Gigasporaceae) or spores (Pacisporaceae and Paraglomeraceae).

Conclusions

Differences of AMF taxa in the biomass allocation patterns among propagules are maintained throughout the year. Progress in the knowledge of functional features of AMF communities and their responses to seasonal variations are important for the AMF application in Mediterranean ecosystems.
  相似文献   

6.
Two grass species — Calamagrostis villosa (Chaix) J.F. Gmelin and Deschampsia flexuosa (L.) Trin. — are expanding in mountain Norway spruce (Picea abies L. Karst.) forests of Central Europe damaged by anthropogenic pollution constituted particularly of acid rain. This invasion of grasses may be caused by the higher irradiance reaching the forest floor after the pollution-induced tree defoliation. The relative abundance of the two grass species is changing during the process of forest decline. Our study investigated the effects of arbuscular mycorrhizal fungi (AMF) on the growth and coexistence of both species under simulated acid rain (SAR) and two levels of irradiance. Three microcosm experiments were conducted to investigate how both grasses are influenced by the AMF when grown separately or together interacting via extraradical mycelium (ERM). A positive growth response to inoculation with Glomus mosseae BEG 25 was found for both grass species when cultivated separately and the mycorrhizal dependence and the growth benefit for D. flexuosa was greater than for C. villosa. However, when both grass species were grown together in the rhizoboxes with separated root and hyphal compartments, the growth effect of the AMF was the opposite, i.e. C. villosa benefited more. The plants did not benefit from the AMF inoculation under the SAR treatment compared with dH2O treatment. The SAR also negatively influenced root length colonised by AMF, length of the ERM, alkaline phosphatase and NADH diaphorase activities of the ERM. The role of the ERM in transporting phosphorus between these grasses was verified by applying the radioisotope 32P. There was a greater transport of isotopic 32P between inoculated plants C. villosa and D. flexuosa grown in separated root compartments, as compared to non-inoculated plants. The amount of transported 32P was low: a maximum of 3% of applied 32P was detected in the shoots of receiver plants. Mechanical disturbance of the ERM significantly decreased the 32 P transport between plants. The 32P transport between mycorrhizal plants was higher in the D. flexuosa to C. villosa direction than in the opposite one. Neither the SAR nor the low level of irradiance influenced the amount of transported 32P. We discuss the role of ERM links between root systems in the coexistence of both grass species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer’s recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are essential constituents of most terrestrial ecosystems. AMF species differ in terms of propagation strategies and the major propagules they form. This study compared the AMF community composition of different propagule fractions – colonized roots, spores and extraradical mycelium (ERM) – associated with five Mediterranean plant species in Sierra de Baza Natural Park (Granada, Spain). AMF were identified using 454 pyrosequencing of the SSU rRNA gene. A total of 96 AMF phylogroups [virtual taxa (VT)] were detected in the study site, including 31 novel VT. After per‐sample sequencing depth standardization, 71 VT were recorded from plant roots, and 47 from each of the spore and ERM fractions. AMF communities differed significantly among the propagule fractions, and the root‐colonizing fraction differed among host plant species. Indicator VT were detected for the root (13 Glomus VT), spore (Paraglomus VT281, VT336, Pacispora VT284) and ERM (Diversispora VT62) fractions. This study provides detailed evidence from a natural system that AMF taxa are differentially allocated among soil mycelium, soil spores and colonized root propagules. This has important implications for interpreting AMF diversity surveys and designing applications of AMF in vegetation restoration.  相似文献   

9.
Gonzalez-Chavez  C.  D'Haen  Jan  Vangronsveld  J.  Dodd  J.C. 《Plant and Soil》2002,240(2):287-297
The form and localisation of Cu accumulation in the extraradical mycelium (ERM) of three arbuscular mycorrhizal fungi (AMF), isolated from the same polluted soil contaminated with the Cu and Arsenate, was studied. There were differences in the capacity of the ERM of the three AMF to sorb and accumulate Cu. Glomus caledonium BEG133 had a significantly lower Cu-sorption capacity than Glomus mosseae BEG132 and Glomus claroideum BEG134 isolated from the polluted soil as well as an isolate of G. mosseae BEG25 from a non-polluted soil. This was directly related to the cation exchange capacity (CEC) of the ERM of these fungi. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) linked to an energy dispersive X-ray spectrometer (EDAX) gave more detailed information, showing that the ERM of AMF from the polluted soil was able to accumulate Cu in the mucilaginous outer hyphal wall zone, cell wall and inside the hyphal cytoplasm. The EDAX spectra showed that the accumulated Cu was mainly associated with Fe in the mucilaginous outer hyphal wall zone and in the cell wall. Cu was associated with traces of arsenate inside the cytoplasm of the ERM of Glomus mosseae BEG132 but this was not visible inside the ERM of Glomus caledonium BEG133 or Glomus claroideum BEG134. This work suggests that the ERM of AMF is able to sorb and accumulate Cu, but different tolerance mechanisms exist between the three AMF isolated from the same polluted soil providing further evidence for functional diversity within populations of AMF in soils.  相似文献   

10.
丛枝菌根真菌在土壤氮素循环中的作用   总被引:12,自引:0,他引:12  
陈永亮  陈保冬  刘蕾  胡亚军  徐天乐  张莘 《生态学报》2014,34(17):4807-4815
作为植物需求量最大的营养元素,氮素是陆地生态系统初级生产力的主要限制因子。丛枝菌根真菌能与地球上80%以上的陆生植物形成菌根共生体,帮助宿主植物吸收土壤中的P、N等矿质养分。目前,丛枝菌根真菌与氮素循环相关研究侧重于真菌对氮素的吸收形态以及共生体中氮的传输代谢机制,却忽略了丛枝菌根真菌在固氮过程、矿化与吸收过程、硝化过程、反硝化过程以及氮素淋洗过程等土壤氮素循环过程中所起到的潜在作用,并且越来越多的证据也表明丛枝菌根真菌是影响土壤氮素循环过程的重要因子。总结了丛枝菌根真菌可利用的氮素形态及真菌的氮代谢转运相关基因的研究现状;重点分析了丛枝菌根真菌在调控土壤氮素循环过程中的潜在作用以及在生态系统中的重要生态学意义,同时提出了丛枝菌根真菌在土壤氮素循环过程中一些需要深入研究的问题。  相似文献   

11.
Mycorrhizas are ubiquitous symbioses that may have an important role in the movement of C from air to soil. Studies on the effects of climate change factors on mycorrhizas have been concentrated on the effects of atmospheric [CO2] whereas temperature effects have been neglected. Based on previous results showing no effect of varying atmospheric [CO2] on the development and P uptake of the arbuscular mycorrhizal fungi (AMF) colonizing plants growing in controlled conditions, we hypothesized that soil temperature would have a higher impact on AMF development and nutrient uptake than the effects of [CO2] on the host plant. Pea plants were grown in association with either a single isolate of Glomus caledonium or AMF from field soil in factorial combination with the corresponding current (10 °C) or elevated (15 °C) soil temperatures at current (350 p.p.m) or elevated (700 p.p.m) atmospheric [CO2]. 33P uptake by extraradical AMF hyphae was measured independently from root P uptake in a root exclusion compartment. Intraradical colonization developed well at both soil temperatures and almost duplicated from 10 to 15 °C. Extraradical mycelium developed only at 15 °C in the root exclusion compartment and hyphal P uptake could therefore be studied at 15 °C only. Hyphal P uptake differed markedly between inoculum types, but was not altered by growing the host plants at two atmospheric [CO2] levels. No significant [CO2] × soil temperature interactions were observed. The results suggested that, in the system tested, AMF development and function is likely more influenced by the temperature component of climate change than by its [CO2] component. We suggest that much more attention should be paid to temperature effects in future studies.  相似文献   

12.
M. Vosatka  J.C. Dodd 《Plant and Soil》1998,200(2):251-263
A series of microcosm experiments was established to investigate the effects of simulated acid rain on the capacity of three arbuscular mycorrhizal fungi (AMF) to germinate and colonize two grasses, Calamagrostis villosa and Deschampsia flexuosa. These two grasses are normally found in degraded Norway spruce forests in the Northern Czech Republic where acid rain pollution exists and C. villosa initially outcompetes D. flexuosa for the same niche. An AM fungus isolated from acid soils (Acaulospora tuberculata BEG41) was more tolerant of acidification than two species of Glomus (isolated from agricultural soils of neutral pH) in microcosm studies. Different effects of simulated acid rain (SAR) were found at all stages of the development of three AMF studied in model systems, including spore germination, colonization of host roots, and alkaline phosphatase (ALP) and NADH diaphorase activity of the extraradical mycelium. No ALP activity was found in hyphae germinating from the spores without plants whereas it was detected in all hyphae linked to a functioning intraradical mycelium.Simulated acid rain also affected the mycorrhizal growth response and belowground competition of the two grasses. Disturbance of the ERM between the two plant species significantly reduced the growth of C. villosa but not D. flexuosa. Disturbance also decreased root colonization by AMF of both plants, the total length of ERM and the total length of extraradical hyphae with ALP and NADH diaphorase activity adjacent to both plants. D. flexuosa appeared less dependent on the mycorrhizal state, for shoot and root growth, than C. villosa under the experimental conditions. The ability, therefore, of C. villosa to thrive in forest stands suffering from acid rain pollution may be related to this dependence on its mycorrhizal hyphal links to D. flexuosa under the environmental conditions produced by the pollution including higher light levels.  相似文献   

13.
Growth and enzymatic activities of extraradical mycelia (ERM) of native mycorrhizal symbionts associated with three orchid species, Dactylorhiza fuchsii, D. majalis and Platanthera bifolia, were studied. ERM extracted from the mycorrhizosphere of these species showed features typical for fungi that form orchid mycorrhiza. In the first pot experiment, three different treatments were applied on tubers of D. fuchsii transplanted from a natural site: control (no specific treatment), reinoculated (surface-sterilized tubers reinoculated with mycorrhizal fungi-colonised roots), and benomyl (nonsterilized tubers treated with fungicide). However, no significant differences in ERM growth and intensity of root mycorrhizal colonisation at harvest were observed among these treatments. ERM associated with reinoculated D. fuchsii plants showed significantly higher alkaline phosphatase (ALP) enzymatic activity at week 36 than at week 24, but no differences were observed for NADH diaphorase activity. Benomyl application significantly reduced ALP activity in comparison with reinoculated plants at week 36. In the second experiment, plants of all three species were either untreated (control), or repeatedly treated with benomyl. Similarly to the results of the first experiment, benomyl application did not reduce the ERM growth of mycorrhizal symbionts associated with D. majalis and D. fuchsii. The low ERM growth associated with benomyl-treated P. bifolia was probably caused by poor root system development in this treatment. Significantly higher mycorrhizal colonisation was found for D. fuchsii compared to P. bifolia in control treatments at the end of cultivation. The ERM of native symbionts of the three orchid species studied seemed to have a different growth pattern over time and responded differently to fungicide application.  相似文献   

14.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

15.
We investigated the functional significance of extraradical mycorrhizal networks produced by geographically different isolates of the arbuscular mycorrhizal fungal (AMF) species Glomus mosseae and Glomus intraradices. A two-dimensional experimental system was used to visualize and quantify intact extraradical mycelium (ERM) spreading from Medicago sativa roots. Growth, phosphorus (P) and nitrogen (N) nutrition were assessed in M. sativa plants grown in microcosms. The AMF isolates were characterized by differences in extent and interconnectedness of ERM. Phenotypic fungal variables, such as total hyphal length, hyphal density, hyphal length per mm of total or colonized root length, were positively correlated with M. sativa growth response variables, such as total shoot biomass and plant P content. The utilization of an experimental system in which size, growth rate, viability and interconnectedness of ERM extending from mycorrhizal roots are easily quantified under realistic conditions allows the simultaneous evaluation of different isolates and provides data with a predictive value for selection of efficient AMF.  相似文献   

16.
The P efficiency, crop yield, and response of wheat to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (19 years) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIR) of wheat plants at acquiring P were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Without AMF inoculation, higher crop yields but lower colonization rates were observed in the NPK and two OA-inputted treatments, and NPK had significantly (P < 0.05) lower impacts on organic C and available P in soils and thereby P acquisition of wheat plants compared with OA and 1/2 OM. G. caledonium inoculation significantly (P < 0.05) increased colonization rates with the NPK and two P-deficient treatments but significantly (P < 0.05) increased vegetative biomass, crop yield, and P acquisition of wheat as well as soil alkaline phosphatase (ALP) activity, only with the NPK treatment. This gave an MIR of ca. 45% on total P acquisition of wheat plants. There were no other remarkable MIRs. It suggested that the MIR is determined by soil available P status, and rational combination of AMF with chemical NPK fertilizer can compensate for organic amendments by improving P-acquisition efficiency in arable soils.  相似文献   

17.
Intentional use of arbuscular mycorrhizal fungi (AMF) in cropping systems has been marginal, owing to the high cost and limited biodiversity of commercial inocula, together with the timeliness of colonization to achieve benefits. Additionally, mycorrhiza are considered incompatible with high input cropping systems. Combining results from 4 different experiments resulted in a strategy for the earlier and faster colonization by AMF, through an extensive extraradical mycelium (ERM) acting as a preferential source of inoculum if kept intact by the adoption of appropriate tillage techniques. Selection of host plants on which the ERM develops, provides the tool to manage AMF functional diversity. This strategy resulted in protection of sensitive crop species against biotic and abiotic stresses and can be implemented in low- and high-input cropping systems. Under Mn toxicity arbuscular colonization increased 2.6-fold and shoot dry weight 2.3-fold. In presence of Fusarium, arbuscular colonization increased 2.1-fold and shoot dry weight 1.5-fold.  相似文献   

18.
Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani   总被引:1,自引:0,他引:1  
Mycorrhiza frequently leads to the control of root pathogens, but appears to have the opposite effect on leaf pathogens. In this study, we studied mycorrhizal effects on the development of early blight in tomato (Solanum lycopersicum) caused by the necrotrophic fungus Alternaria solani. Alternaria-induced necrosis and chlorosis of all leaves were studied in mycorrhizal and non-mycorrhizal plants over time course and at different soil P levels. Mycorrhizal tomato plants had significantly less A. solani symptoms than non-mycorrhizal plants, but neither plant growth nor phosphate uptake was enhanced by mycorrhizas. An increased P supply had no effect on disease severity in non-mycorrhizal plants, but led to a higher disease severity in mycorrhizal plants. This was parallel to a P-supply-induced reduction in mycorrhiza formation. The protective effect of mycorrhizas towards development of A. solani has some parallels to induced systemic resistance, mediated by rhizobacteria: both biocontrol agents are root-associated organisms and both are effective against necrotrophic pathogens. The possible mechanisms involved are discussed.  相似文献   

19.
Cuenca  Gisela  De Andrade  Zita  Meneses  Erasmo 《Plant and Soil》2001,231(2):233-241
In this work, we present the results obtained after 9 months of watering with acidic solutions seedlings of Clusia multiflora, inoculated with arbuscular mycorrhizal fungi (AMF). The fungi were isolated from acid and neutral soil. C.multiflora is a tropical woody species that naturally grows on acid soils high in soluble Al. The research evaluated if arbuscular mycorrhizas (AM) could be responsible at least partially for the tolerance to acidity and to aluminum of C.multiflora and if an inoculum of AM fungi (AMF) coming from acid soils contributes more to the tolerance of acidity of C. multiflora than one coming from neutral soils. Results showed that in the absence of AMF (control treatment), the seedlings of C. multiflora did not grow, indicating that this species is highly dependent on AMF. When C. multiflora was exposed to a very acidic solution (pH 3), plants inoculated with AMF from acid soils were taller than those inoculated with AMF from neutral soils. Acidity affected root growth and root length. Plants inoculated with AMF from neutral soils showed thicker roots and lower shoot-root relationships than those inoculated with AMF from acid soils. Acidity did not affect root growth of C. multiflora inoculated with AMF from acid soils even when they were watered with solutions of pH 3. All plants accumulated high quantities of Al in roots (>10000 mg.kg –1), but plants inoculated with AMF from acid soils, accumulated less aluminum in roots than plants from the other treatments. A histochemical study of the distribution of Al in roots showed that in mycorrhizal plants, the aluminum was bound to the cell walls in the mycelium of the fungus, mainly in the vesicles or in auxiliary cells, a fact showed for the first time in this work.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21 % of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9 %. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2–7.7, while it ranged from 25.8–48 to 35.6–53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2 %). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号