首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lord C 《Cell》2011,147(1):24-25
Although genes associated with human autism spectrum disorders have been identified, bridging the gap between genetics and the patchwork of behavioral deficits associated with the disease remains an enormous challenge. Pe?agarikano et al. (2011) now show that mice lacking CNTNAP2, a gene that causes a rare form of epilepsy associated with autistic features and language impairment, display similar phenotypes to their human counterparts, raising hopes that such models may speed the identification of neuronal circuitries underlying the core features of autism.  相似文献   

2.
Childhood absence epilepsy is an idiopathic, generalized non-convulsive epilepsy with a multifactorial genetic aetiology. Molecular-genetic analyses of affected human families and experimental models, together with neurobiological investigations, have led to important breakthroughs in the identification of candidate genes and loci, and potential pathophysiological mechanisms for this type of epilepsy. Here, we review these results, and compare the human and experimental phenotypes that have been investigated. Continuing efforts and comparisons of this type will help us to elucidate the multigenetic traits and pathophysiology of this form of generalized epilepsy.  相似文献   

3.
Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment.  相似文献   

4.
Increased plasma glutamic acid in a genetic model of epilepsy   总被引:4,自引:0,他引:4  
A significant increase in the plasma levels of glutamic acid and a significant decrease in aspartic acid and taurine in epileptic patients and their first degree relatives was reported more than a decade ago and an underlying genetic basis for these amino acid changes was suggested. The main objective of the present study was to determine the plasma levels of glutamic acid, aspartic acid and taurine in El mice which are an inbred epileptic mutant mouse strain. The results show a significant increase in plasma glutamic acid but no changes in aspartic acid or taurine in the epileptic mice as compared to controls. The data provide the first evidence of a significant increase in plasma glutamic acid in an animal model of hereditary epilepsy and substantiate the hypothesis that a genetic defect underlies the elevated plasma glutamic acid levels in association with epilepsy. The findings are also compatible with neurochemical and neurophysiological evidence implicating glutamic acid in the mechanism of seizures.  相似文献   

5.
A novel gene causing a mendelian audiogenic mouse epilepsy.   总被引:12,自引:0,他引:12  
Frings mice are a model of generalized epilepsy and have seizures in response to loud noises. This phenotype is due to the autosomal recessive inheritance of a single gene on mouse chromosome 13. Here we report the fine genetic and physical mapping of the locus. Sequencing of the region led to identification of a novel gene; mutant mice are homozygous for a single base pair deletion that leads to premature termination of the encoded protein. Interestingly, the mRNA levels of this gene in various tissues are so low that the cDNA has eluded detection by standard library screening approaches. Study of the MASS1 protein will lead to new insights into regulation of neuronal excitability and a new pathway through which dysfunction can lead to epilepsy.  相似文献   

6.
The genetics of epilepsy in the Belgian tervuren and sheepdog   总被引:1,自引:0,他引:1  
Idiopathic epilepsy is characterized by recurrent seizure activity without an identifiable underlying anatomic defect. Dogs experiencing repeated bouts of severe seizures are given therapeutic medication to control their frequency and severity. Idiopathic epilepsy has been reported in many dog breeds and was identified as the predominant health issue facing dog breeds in a recent survey by the American Kennel Club. A growing body of evidence supports a hereditary basis for idiopathic epilepsy, with a variety of genetic inheritance models proposed. In the Belgian tervuren and sheepdog, epilepsy is highly heritable with a polygenic mode of inheritance, though apparently influenced by a single autosomal recessive locus of large effect. In an effort to establish molecular linkage between the epileptic phenotype and the locus of large effect, we have screened genomic DNA from families of affected tervuren and sheepdogs with 100 widely dispersed, polymorphic canine microsatellite markers (0.595 average PIC value). Although not significant (LOD scores <3.0), three genomic regions have shown nominal linkage between markers and the epileptic phenotype. Additional related dogs are being screened with these and additional markers to increase the power to detect the presence of a linked locus.  相似文献   

7.
8.
There has been much interest in utilizing the dog as a genetic model for common human diseases. Both dogs and humans suffer from naturally occurring epilepsies that share many clinical characteristics. Investigations of inherited human epilepsies have led to the discovery of several mutated genes involved in this disease; however, the vast majority of human epilepsies remain unexplained. Mouse models of epilepsy exist, including single-gene spontaneous and knockout models, but, similar to humans, other, polygenic models have been more difficult to discern. This appears to also be the case in canine epilepsy genetics. There are two forms of canine epilepsies for which gene mutations have been described to date: the progressive myoclonic epilepsies (PMEs) and idiopathic epilepsy (IE). Gene discovery in the PMEs has been more successful, with eight known genes; six of these are orthologous to corresponding human disorders, while two are novel genes that can now be used as candidates for human studies. Only one IE gene has been described in dogs, an LGI2 mutation in Lagotto Romagnolos with a focal, juvenile remitting epilepsy. This gene is also a novel candidate for human remitting childhood epilepsy studies. The majority of studies of dog breeds with IE, however, have either failed to identify any genes or loci of interest, or, as in complex mouse and human IEs, have identified multiple QTLs. There is still tremendous promise in the ongoing canine epilepsy studies, but if canine IEs prove to be as genetically complex as human and murine IEs, then deciphering the bases of these canine epilepsies will continue to be challenging.  相似文献   

9.
Inhibitory synaptic receptors are dysfunctional in epileptic brains, and agents that selectively target these receptors may be effective for the treatment of epilepsy. MicroRNAs interfere with the translation of target genes, including various synaptic proteins. Here, we show that miR-203 regulates glycine receptor-β (Glrb) in epilepsy models. miR-203 is upregulated in the hippocampus of epileptic mice and human epileptic brains and is predicted to target inhibitory synaptic receptors, including Glrb. In vitro transfection, target gene luciferase assays, and analysis of human samples confirmed the direct inhibition of GLRB by miR-203, and AM203, an antagomir targeting miR-203, reversed the effect of miR-203. When intranasal AM203 was administered, AM203 reached the brain and restored hippocampal GLRB levels in epileptic mice. Finally, intranasal AM203 reduced the epileptic seizure frequency of mice. Overall, this study suggests that GLRB expression in the epileptic brain is controlled by miR-203, and intranasal delivery of AM203 showed therapeutic effects in chronic epilepsy mice.  相似文献   

10.
Epilepsy is a common and diverse set of chronic neurological disorders characterized by spontaneous, unprovoked, and recurrent epileptic seizures. Environmental factors and acquired disposition are proposed to play a role to the pathogenesis of epilepsy. Genetic factors are important contributors as well. Comparing to the phenotype of epilepsy caused by mutation of single gene on an autosome, the phenotype of X-linked epilepsy is more complex. X-linked epilepsy usually manifests as part of a syndrome or epileptic encephalopathy, and the variability of clinical manifestations of X-linked epilepsy may be attributed to several factors including the type of genetic mutation, methylation, X chromosome random inactivation, and mosaic distribution. As a result, it is difficult to establish the genotype–phenotype correlation, diagnostic tests, and genetic counseling. In this review, we provide an overview of the X-linked epilepsy including responsible loci and genes, the molecular biology, the associated complex phenotypes, and the interference factors. This information may provide us a better understanding of the pathogenesis of X-linked epilepsy and may contribute to clinical diagnosis and therapy of epilepsy.  相似文献   

11.
Molecular genetics of the NCLs -- status and perspectives   总被引:2,自引:0,他引:2  
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types, including neurons. Most NCL subtypes are inherited in an autosomal recessive manner and characterized clinically by epileptic seizures, progressive psychomotor decline, visual failure, variable age of onset, and premature death. To date, seven genes underlying human NCLs have been identified. Most of the mutations in these genes are associated with specific disease subtypes, while some result in variable disease onset, severity and progression. In addition to these, there are still disease subgroups with unknown molecular genetic backgrounds. Although apparent clinical homogeneity exists within some of these subgroups, actual genetic heterogeneity may complicate gene identification. Additional clues to the identification of these unknown genes may come from animal models of NCL and from functional studies of already known genes which may suggest further candidates.  相似文献   

12.
The role of IL-12, IL-23 and IFN-gamma in immunity to viruses   总被引:2,自引:0,他引:2  
IL-12, IL-23 and IFN-gamma form a loop and have been thought to play a crucial role against infectious viruses, which are the prototype of "intracellular" pathogens. In the last 10 years, the generation of knock-out (KO) mice for genes that control IL-12/IL-23-dependent IFN-gamma-dependent mediated immunity (STAT1, IFN-gammaR1, IFNgammaR2, IL-12p40 and IL-12Rbeta1) and the identification of patients with spontaneous germline mutations in these genes has led to a re-examination of the role of these cytokines in anti-viral immunity. We here review viral infections in mice and humans with genetic defects in the IL-12/IL-23-IFN-gamma axis. A comparison of the phenotypes observed in KO mice and deficient patients suggests that the human IL-12/IL-23-IFN-gamma axis plays a redundant role in immunity to most viruses, whereas its mouse counterparts play a more important role against several viruses.  相似文献   

13.
Over the past decades, genome-wide association studies (GWAS) have led to a dramatic expansion of genetic variants implicated with human traits and diseases. These advances are expected to result in new drug targets but the identification of causal genes and the cell biology underlying human diseases from GWAS remains challenging. Here, we review protein interaction network-based methods to analyse GWAS data. These approaches can rank candidate drug targets at GWAS-associated loci or among interactors of disease genes without direct genetic support. These methods identify the cell biology affected in common across diseases, offering opportunities for drug repurposing, as well as be combined with expression data to identify focal tissues and cell types. Going forward, we expect that these methods will further improve from advances in the characterisation of context specific interaction networks and the joint analysis of rare and common genetic signals.  相似文献   

14.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types, including neurons. Most NCL subtypes are inherited in an autosomal recessive manner and characterized clinically by epileptic seizures, progressive psychomotor decline, visual failure, variable age of onset, and premature death. To date, seven genes underlying human NCLs have been identified. Most of the mutations in these genes are associated with specific disease subtypes, while some result in variable disease onset, severity and progression. In addition to these, there are still disease subgroups with unknown molecular genetic backgrounds. Although apparent clinical homogeneity exists within some of these subgroups, actual genetic heterogeneity may complicate gene identification. Additional clues to the identification of these unknown genes may come from animal models of NCL and from functional studies of already known genes which may suggest further candidates.  相似文献   

15.
Benign infantile familial convulsions is an autosomal dominant disorder characterized by nonfebrile seizures, with the first attack occurring at age 3-12 mo. It is one of the rare forms of epilepsy that are inherited as monogenic Mendelian traits, thus providing a powerful tool for mapping genes involved in epileptic syndromes. Paroxysmal choreoathetosis is an involuntary-movement disorder characterized by attacks that occur spontaneously or are induced by a variety of stimuli. Classification is still elusive, and the epileptic nature of this movement disorder has long been discussed and remains controversial. We have studied four families from northwestern France in which benign infantile convulsions was inherited as an autosomal dominant trait together with variably expressed paroxysmal choreoathetosis. The human genome was screened with microsatellite markers regularly spaced, and strong evidence of linkage for the disease gene was obtained in the pericentromeric region of chromosome 16, with a maximum two-point LOD score, for D16S3133, of 6.76 at a recombination fraction of 0. Critical recombinants narrowed the region of interest to a 10-cM interval around the centromere. Our study provides the first genetic evidence for a common basis of convulsive and choreoathetotic disorders and will help in the understanding and classification of paroxysmal neurological syndromes.  相似文献   

16.
17.
Considering the suitability of laboratory rats in epilepsy research, we and other groups have been developing genetic models of epilepsy in this species. After epileptic rats or seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits were usually genetically-fixed by selective breeding. So far, the absence seizure models GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER have been established. Dissection of the genetic bases including causative genes in these epileptic rat models would be a significant step toward understanding epileptogenesis. N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type 1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea (MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2 (EA2) model rats. Thus, epileptic rat models have been established on the two paths: ‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel epileptic rat models will be extensively promoted by the use of sophisticated genome editing technologies.  相似文献   

18.
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity.Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.  相似文献   

19.
Mutations in the voltage-gated sodium channels SCN1A and SCN2A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn2aQ54 has an epilepsy phenotype as a result of a mutation in Scn2a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn2aQ54 phenotype is influenced by genetic background. Congenic C57BL/6J.Q54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J × SJL/J]F1.Q54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N2 backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn2aQ54 mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.  相似文献   

20.
The search for genes underlying alcohol-related behaviours in rodent models of human alcoholism has been ongoing for many years with only limited success. Recently, new strategies that integrate several of the traditional approaches have provided new insights into the molecular mechanisms underlying ethanol's actions in the brain. We have used alcohol-preferring C57BL/6J (B6) and alcohol-avoiding DBA/2J (D2) genetic strains of mice in an integrative strategy combining high-throughput gene expression screening, genetic segregation analysis, and mapping to previously published quantitative trait loci to uncover candidate genes for the ethanol-preference phenotype. In our study, 2 genes, retinaldehyde binding protein 1 (Rlbp1) and syntaxin 12 (Stx12), were found to be strong candidates for ethanol preference. Such experimental approaches have the power and the potential to greatly speed up the laborious process of identifying candidate genes for the animal models of human alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号