首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
MOTIVATION: Grouping genes having similar expression patterns is called gene clustering, which has been proved to be a useful tool for extracting underlying biological information of gene expression data. Many clustering procedures have shown success in microarray gene clustering; most of them belong to the family of heuristic clustering algorithms. Model-based algorithms are alternative clustering algorithms, which are based on the assumption that the whole set of microarray data is a finite mixture of a certain type of distributions with different parameters. Application of the model-based algorithms to unsupervised clustering has been reported. Here, for the first time, we demonstrated the use of the model-based algorithm in supervised clustering of microarray data. RESULTS: We applied the proposed methods to real gene expression data and simulated data. We showed that the supervised model-based algorithm is superior over the unsupervised method and the support vector machines (SVM) method. AVAILABILITY: The program written in the SAS language implementing methods I-III in this report is available upon request. The software of SVMs is available in the website http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi  相似文献   

2.
Bayesian mixture model based clustering of replicated microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Identifying patterns of co-expression in microarray data by cluster analysis has been a productive approach to uncovering molecular mechanisms underlying biological processes under investigation. Using experimental replicates can generally improve the precision of the cluster analysis by reducing the experimental variability of measurements. In such situations, Bayesian mixtures allow for an efficient use of information by precisely modeling between-replicates variability. RESULTS: We developed different variants of Bayesian mixture based clustering procedures for clustering gene expression data with experimental replicates. In this approach, the statistical distribution of microarray data is described by a Bayesian mixture model. Clusters of co-expressed genes are created from the posterior distribution of clusterings, which is estimated by a Gibbs sampler. We define infinite and finite Bayesian mixture models with different between-replicates variance structures and investigate their utility by analyzing synthetic and the real-world datasets. Results of our analyses demonstrate that (1) improvements in precision achieved by performing only two experimental replicates can be dramatic when the between-replicates variability is high, (2) precise modeling of intra-gene variability is important for accurate identification of co-expressed genes and (3) the infinite mixture model with the 'elliptical' between-replicates variance structure performed overall better than any other method tested. We also introduce a heuristic modification to the Gibbs sampler based on the 'reverse annealing' principle. This modification effectively overcomes the tendency of the Gibbs sampler to converge to different modes of the posterior distribution when started from different initial positions. Finally, we demonstrate that the Bayesian infinite mixture model with 'elliptical' variance structure is capable of identifying the underlying structure of the data without knowing the 'correct' number of clusters. AVAILABILITY: The MS Windows based program named Gaussian Infinite Mixture Modeling (GIMM) implementing the Gibbs sampler and corresponding C++ code are available at http://homepages.uc.edu/~medvedm/GIMM.htm SUPPLEMENTAL INFORMATION: http://expression.microslu.washington.edu/expression/kayee/medvedovic2003/medvedovic_bioinf2003.html  相似文献   

3.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

4.
MOTIVATION: Clustering microarray gene expression data is a powerful tool for elucidating co-regulatory relationships among genes. Many different clustering techniques have been successfully applied and the results are promising. However, substantial fluctuation contained in microarray data, lack of knowledge on the number of clusters and complex regulatory mechanisms underlying biological systems make the clustering problems tremendously challenging. RESULTS: We devised an improved model-based Bayesian approach to cluster microarray gene expression data. Cluster assignment is carried out by an iterative weighted Chinese restaurant seating scheme such that the optimal number of clusters can be determined simultaneously with cluster assignment. The predictive updating technique was applied to improve the efficiency of the Gibbs sampler. An additional step is added during reassignment to allow genes that display complex correlation relationships such as time-shifted and/or inverted to be clustered together. Analysis done on a real dataset showed that as much as 30% of significant genes clustered in the same group display complex relationships with the consensus pattern of the cluster. Other notable features including automatic handling of missing data, quantitative measures of cluster strength and assignment confidence. Synthetic and real microarray gene expression datasets were analyzed to demonstrate its performance. AVAILABILITY: A computer program named Chinese restaurant cluster (CRC) has been developed based on this algorithm. The program can be downloaded at http://www.sph.umich.edu/csg/qin/CRC/.  相似文献   

5.
Validating clustering for gene expression data   总被引:24,自引:0,他引:24  
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality.  相似文献   

6.
Clustering gene-expression data with repeated measurements   总被引:4,自引:1,他引:3  
Clustering is a common methodology for the analysis of array data, and many research laboratories are generating array data with repeated measurements. We evaluated several clustering algorithms that incorporate repeated measurements, and show that algorithms that take advantage of repeated measurements yield more accurate and more stable clusters. In particular, we show that the infinite mixture model-based approach with a built-in error model produces superior results.  相似文献   

7.
Model-based clustering is a popular tool for summarizing high-dimensional data. With the number of high-throughput large-scale gene expression studies still on the rise, the need for effective data- summarizing tools has never been greater. By grouping genes according to a common experimental expression profile, we may gain new insight into the biological pathways that steer biological processes of interest. Clustering of gene profiles can also assist in assigning functions to genes that have not yet been functionally annotated. In this paper, we propose 2 model selection procedures for model-based clustering. Model selection in model-based clustering has to date focused on the identification of data dimensions that are relevant for clustering. However, in more complex data structures, with multiple experimental factors, such an approach does not provide easily interpreted clustering outcomes. We propose a mixture model with multiple levels, , that provides sparse representations both "within" and "between" cluster profiles. We explore various flexible "within-cluster" parameterizations and discuss how efficient parameterizations can greatly enhance the objective interpretability of the generated clusters. Moreover, we allow for a sparse "between-cluster" representation with a different number of clusters at different levels of an experimental factor of interest. This enhances interpretability of clusters generated in multiple-factor contexts. Interpretable cluster profiles can assist in detecting biologically relevant groups of genes that may be missed with less efficient parameterizations. We use our multilevel mixture model to mine a proliferating cell line expression data set for annotational context and regulatory motifs. We also investigate the performance of the multilevel clustering approach on several simulated data sets.  相似文献   

8.
MOTIVATION: Bioinformatics clustering tools are useful at all levels of proteomic data analysis. Proteomics studies can provide a wealth of information and rapidly generate large quantities of data from the analysis of biological specimens. The high dimensionality of data generated from these studies requires the development of improved bioinformatics tools for efficient and accurate data analyses. For proteome profiling of a particular system or organism, a number of specialized software tools are needed. Indeed, significant advances in the informatics and software tools necessary to support the analysis and management of these massive amounts of data are needed. Clustering algorithms based on probabilistic and Bayesian models provide an alternative to heuristic algorithms. The number of clusters (diseased and non-diseased groups) is reduced to the choice of the number of components of a mixture of underlying probability. The Bayesian approach is a tool for including information from the data to the analysis. It offers an estimation of the uncertainties of the data and the parameters involved. RESULTS: We present novel algorithms that can organize, cluster and derive meaningful patterns of expression from large-scaled proteomics experiments. We processed raw data using a graphical-based algorithm by transforming it from a real space data-expression to a complex space data-expression using discrete Fourier transformation; then we used a thresholding approach to denoise and reduce the length of each spectrum. Bayesian clustering was applied to the reconstructed data. In comparison with several other algorithms used in this study including K-means, (Kohonen self-organizing map (SOM), and linear discriminant analysis, the Bayesian-Fourier model-based approach displayed superior performances consistently, in selecting the correct model and the number of clusters, thus providing a novel approach for accurate diagnosis of the disease. Using this approach, we were able to successfully denoise proteomic spectra and reach up to a 99% total reduction of the number of peaks compared to the original data. In addition, the Bayesian-based approach generated a better classification rate in comparison with other classification algorithms. This new finding will allow us to apply the Fourier transformation for the selection of the protein profile for each sample, and to develop a novel bioinformatic strategy based on Bayesian clustering for biomarker discovery and optimal diagnosis.  相似文献   

9.
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r(2) test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed.  相似文献   

10.
Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC) algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data.The implementation of GBHC is available at https://sites.google.com/site/gaussianbhc/  相似文献   

11.
We consider model-based clustering of data that lie on a unit sphere. Such data arise in the analysis of microarray experiments when the gene expressions are standardized so that they have mean 0 and variance 1 across the arrays. We propose to model the clusters on the sphere with inverse stereographic projections of multivariate normal distributions. The corresponding model-based clustering algorithm is described. This algorithm is applied first to simulated data sets to assess the performance of several criteria for determining the number of clusters and to compare its performance with existing methods and second to a real reference data set of standardized gene expression profiles.  相似文献   

12.
MOTIVATION: Cluster analysis of gene expression profiles has been widely applied to clustering genes for gene function discovery. Many approaches have been proposed. The rationale is that the genes with the same biological function or involved in the same biological process are more likely to co-express, hence they are more likely to form a cluster with similar gene expression patterns. However, most existing methods, including model-based clustering, ignore known gene functions in clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions as prior probabilities in model-based clustering. In contrast to a global mixture model applicable to all the genes in the standard model-based clustering, we use a stratified mixture model: one stratum corresponds to the genes of unknown function while each of the other ones corresponding to the genes sharing the same biological function or pathway; the genes from the same stratum are assumed to have the same prior probability of coming from a cluster while those from different strata are allowed to have different prior probabilities of coming from the same cluster. We derive a simple EM algorithm that can be used to fit the stratified model. A simulation study and an application to gene function prediction demonstrate the advantage of our proposal over the standard method. CONTACT: weip@biostat.umn.edu  相似文献   

13.
Standard and Consensus Clustering Analysis Tool for Microarray Data (SC2ATmd) is a MATLAB-implemented application specifically designed for the exploration of microarray gene expression data via clustering. Implementation of two versions of the clustering validation method figure of merit allows for performance comparisons between different clustering algorithms, and tailors the cluster analysis process to the varying characteristics of each dataset. Along with standard clustering algorithms this application also offers a consensus clustering method that can generate reproducible clusters across replicate experiments or different clustering algorithms. This application was designed specifically for the analysis of gene expression data, but may be used with any numerical data as long as it is in the right format. AVAILABILITY: SC2ATmd may be freely downloaded from http://www.compbiosci.wfu.edu/tools.htm.  相似文献   

14.
CRCView is a user-friendly point-and-click web server for analyzing and visualizing microarray gene expression data using a Dirichlet process mixture model-based clustering algorithm. CRCView is designed to clustering genes based on their expression profiles. It allows flexible input data format, rich graphical illustration as well as integrated GO term based annotation/interpretation of clustering results. Availability: http://helab.bioinformatics.med.umich.edu/crcview/.  相似文献   

15.
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture (DPM) models provide a nonparametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model-based clustering methods have been to short time series data. In this paper, we present a case study of the application of nonparametric Bayesian clustering methods to the clustering of high-dimensional nontime series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a DPM model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.  相似文献   

16.
MOTIVATION: Clustering is one of the most widely used methods in unsupervised gene expression data analysis. The use of different clustering algorithms or different parameters often produces rather different results on the same data. Biological interpretation of multiple clustering results requires understanding how different clusters relate to each other. It is particularly non-trivial to compare the results of a hierarchical and a flat, e.g. k-means, clustering. RESULTS: We present a new method for comparing and visualizing relationships between different clustering results, either flat versus flat, or flat versus hierarchical. When comparing a flat clustering to a hierarchical clustering, the algorithm cuts different branches in the hierarchical tree at different levels to optimize the correspondence between the clusters. The optimization function is based on graph layout aesthetics or on mutual information. The clusters are displayed using a bipartite graph where the edges are weighted proportionally to the number of common elements in the respective clusters and the weighted number of crossings is minimized. The performance of the algorithm is tested using simulated and real gene expression data. The algorithm is implemented in the online gene expression data analysis tool Expression Profiler. AVAILABILITY: http://www.ebi.ac.uk/expressionprofiler  相似文献   

17.

Background

Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest.

Results

In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method), a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM) using functional annotation information given by the Gene Ontology (GO). The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets.

Conclusions

The results demonstrate that our WDCM produces clusters with more consistent functional annotations than the other methods. The WDCM is also verified to be robust and is capable of clustering gene expression data containing a small quantity of missing values.  相似文献   

18.
MOTIVATION: Over the last decade, a large variety of clustering algorithms have been developed to detect coregulatory relationships among genes from microarray gene expression data. Model-based clustering approaches have emerged as statistically well-grounded methods, but the properties of these algorithms when applied to large-scale data sets are not always well understood. An in-depth analysis can reveal important insights about the performance of the algorithm, the expected quality of the output clusters, and the possibilities for extracting more relevant information out of a particular data set. RESULTS: We have extended an existing algorithm for model-based clustering of genes to simultaneously cluster genes and conditions, and used three large compendia of gene expression data for Saccharomyces cerevisiae to analyze its properties. The algorithm uses a Bayesian approach and a Gibbs sampling procedure to iteratively update the cluster assignment of each gene and condition. For large-scale data sets, the posterior distribution is strongly peaked on a limited number of equiprobable clusterings. A GO annotation analysis shows that these local maxima are all biologically equally significant, and that simultaneously clustering genes and conditions performs better than only clustering genes and assuming independent conditions. A collection of distinct equivalent clusterings can be summarized as a weighted graph on the set of genes, from which we extract fuzzy, overlapping clusters using a graph spectral method. The cores of these fuzzy clusters contain tight sets of strongly coexpressed genes, while the overlaps exhibit relations between genes showing only partial coexpression. AVAILABILITY: GaneSh, a Java package for coclustering, is available under the terms of the GNU General Public License from our website at http://bioinformatics.psb.ugent.be/software  相似文献   

19.
A mixture model-based approach to the clustering of microarray expression data   总被引:13,自引:0,他引:13  
MOTIVATION: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. RESULTS: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. AVAILABILITY: EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/  相似文献   

20.
It has been increasingly recognized that incorporating prior knowledge into cluster analysis can result in more reliable and meaningful clusters. In contrast to the standard modelbased clustering with a global mixture model, which does not use any prior information, a stratified mixture model was recently proposed to incorporate gene functions or biological pathways as priors in model-based clustering of gene expression profiles: various gene functional groups form the strata in a stratified mixture model. Albeit useful, the stratified method may be less efficient than the global analysis if the strata are non-informative to clustering. We propose a weighted method that aims to strike a balance between a stratified analysis and a global analysis: it weights between the clustering results of the stratified analysis and that of the global analysis; the weight is determined by data. More generally, the weighted method can take advantage of the hierarchical structure of most existing gene functional annotation systems, such as MIPS and Gene Ontology (GO), and facilitate choosing appropriate gene functional groups as priors. We use simulated data and real data to demonstrate the feasibility and advantages of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号