首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Novel hydrogel polyelectrolyte complexes (PECs) between the N,N,N,-trimethylchitosan-homocysteine thiolactone (TM-HT-chitosan) and two anionic polymers were investigated. The particles of pure thiolated chitosan and its PECs with alginate and carrageenan were fabricated using the electrospray ionization technique. The hydrogel PEC particles were characterized by scanning electron microscopy, dynamic light scattering, Fourier transform infrared microscopy, thermogravimetric analysis, encapsulation efficiency (EE), mucoadhesive property and in vitro drug release behavior. TM-HT-chitosan/alginate particles could be loaded with camptothecin (CPT), employed as a model anti-cancer drug, at an over 70% EE, and revealed both a reduced burst effect and a prolonged release of CPT over 3 days. The resultant TM-HT-chitosan/alginate PEC particles displayed a 5.60-, 1.86- and 1.55-fold stronger mucoadhesive property compared to that of the unmodified chitosan/alginate PEC at pH 1.2, 4.0 and 6.4, respectively, and this was not affected by the CPT loading level.  相似文献   

2.
Water-soluble N-(4-carboxybutyroyl) chitosan derivatives with different degrees of substitution (DS) were synthesized to enhance the antimicrobial activity of chitosan molecule against plant pathogens. Chitosan in a solution of 2% aqueous acetic acid-methanol (1:1, v/v) was reacted with 0.1, 0.3, 0.6 and 1 mol of glutaric anhydride to give N-(4-carboxybutyroyl) chitosans at DS of 0.10, 0.25, 0.48 and 0.53, respectively. The chemical structures and DS were characterized by 1H and 13C NMR spectroscopy, which showed that the acylate reaction took place at the N-position of chitosan. The synthesized derivatives were more soluble than the native chitosan in water and in dilute aqueous acetic acid and sodium hydroxide solutions. The antimicrobial activity was in vitro investigated against the most economic plant pathogenic bacteria of Agrobacterium tumefaciens and Erwinia carotovora and fungi of Botrytis cinerea, Pythium debaryanum and Rhizoctonia solani. The antimicrobial activity of N-(4-carboxybutyroyl) chitosans was strengthened than the un-modified chitosan with the increase of the DS. A compound of DS 0.53 was the most active one with minimum inhibitory concentration (MIC) of 725 and 800 mg/L against E. carotovora and A. tumefaciens, respectively and also in mycelial growth inhibiation against B. cinerea (EC50 = 899 mg/L), P. debaryanum (EC50 = 467 mg/L) and R. solani (EC50 = 1413 mg/L).  相似文献   

3.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   

4.
The methylated N-aryl chitosan derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMCh) and methylated N-(4-pyridylmethyl) chitosan chloride (MPyMeCh), were synthesized by two steps, the reductive amination and the methylation. The physicochemical properties of chitosan derivatives were determined by ATR-FTIR, NMR, X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The XRD analysis showed that the crystallinity and thermal stability of methylated chitosan derivatives were lower than those of chitosan. The effects of degree of quaternization (DQ), polymer structure and positive charge location on mucoadhesive property and cytotoxicity were investigated by using a mucin particle method and MTT assay compared to N,N,N-trimethylammonium chitosan chloride (TMChC). It was found that the mucoadhesive property and cytotoxicity increased with increasing DQ. At the DQ of 65%, the mucoadhesive property of the MDMCMCh was twofold lower than that of the TMChC. However, this phenomenon did not affect the mucoadhesive property when the DQ was higher than 65%. Surprisingly, the MPyMeCh showed the lowest toxicity even with the high DQ. These could be due to the resonance effect of the positive charge in the pyridine ring and the molecular weight after methylation. Finally, our result revealed that the mucoadhesive property was dependent on the DQ and polymer structure whereas the cytotoxicity was dependent on the combination of the polymer structure, positive charge location and molecular weight after methylation.  相似文献   

5.
Five water-soluble chitosan derivatives were carried out by quaternizing either iodomethane or N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat188) as a quaternizing agent under basic condition. The degree of quaternization (DQ) ranged between 28 ± 2% and 90 ± 2%. The antifungal activity was evaluated by using disc diffusion method, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) methods against Trichophyton rubrum (T. rubrum), Trichophyton mentagrophyte (T. mentagrophyte), and Microsporum gypseum (M. gypseum) at pH 7.2. All quaternized chitosans and its derivatives showed more effective against T. rubrum than M. gypseum and T. mentagrophyte. The MIC and MFC values were found to range between 125-1000 μg/mL and 500-4000 μg/mL, respectively against all fungi. Our results indicated that the quaternized N-(4-N,N-dimethylaminocinnamyl) chitosan chloride showed highest antifungal activity against T. rubrum and M. gypseum compared to other quaternized chitosan derivatives. The antifungal activity tended to increase with an increase in molecular weight, degree of quaternization and hydrophobic moiety against T. rubrum. However, the antifungal activity was depended on type of fungal as well as chemical structure of the quaternized chitosan derivatives.  相似文献   

6.
N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-d-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-d-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-d-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117 ± 2 U mg−1 at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess.  相似文献   

7.
Xu T  Xin M  Li M  Huang H  Zhou S  Liu J 《Carbohydrate research》2011,346(15):2445-2450
N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by 1H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba2+ and Ca2+) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na+ slightly reduced the antibacterial activity of both chitosan and its derivatives.  相似文献   

8.
Chitosan particles were functionalized with ferulic acid (FA) and ethyl ferulate (EF) as substrates using laccase from Myceliophtora thermophyla as biocatalyst. The reactions were performed with chitosan particles under an eco-friendly procedure, in a heterogeneous system at 30 °C, in phosphate buffer (50 mM, pH 7.5).The FA-chitosan derivative presented an intense yellow-orange color stable while the EF-chitosan derivative was colorless. The spectroscopic analyses indicated that the reaction products bound covalently to the free amino groups of chitosan exhibiting a novel absorbance band in the UV/Vis spectra between 300 and 350 nm, at C-2 region by the duplication of C-2 signal in the 13C NMR spectrum, via Schiff base bond (NC) exhibiting novel bands in the FT-IR spectrum at 1640 and 1620 cm−1. Additionally, antioxidant capacities of chitosan derivatives showed that the chitosan derivatives presented improved antioxidant properties, especially for FA-chitosan derivative (EC50 were 0.52 ± 0.04, 0.20 ± 0.02 mg/ml for DPPH and ABTS+ scavenging, respectively).  相似文献   

9.
The present work is focused on the development of thiolated film for fluconazole buccal delivery. To this end, unmodified polymers chitosan and sodium carboxymethylcellulose (NaCMC) backbone was covalently modified by thioglycolic acid (TGA) and cysteine, respectively. The thiolated buccoadhesive film was evaluated in terms of thickness, weight uniformity, water-uptake capacity, drug content, and release patterns. Moreover, mucoadhesion profile was investigated on buccal mucosa. The resulting chitosan–TGA and NaCMC–cysteine conjugates displayed 171?±?13 and 380?±?19 μmol thiol groups per gram of polymer (mean?±?SD; n?=?3), respectively. The water binding capacity of the thiolated film was significantly ~2-fold higher (p?<?0.05) as compared to unmodified film. The obtained thiolated film displayed 5.8-fold higher mucoadhesive properties compared with corresponding film. Controlled release of drugs from film was observed over 8 h. The transport of fluconazole across excised buccal mucosa was enhanced up to 17-fold in comparison with fluconazole applied in buffer. Based on these findings, thiolated film seems to be promising for fluconazole buccal delivery.  相似文献   

10.
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between mS = ± 1/2 (geff ~ 9) or mS = ± 3/2 (geff ~ 4.3) states. Mössbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H37Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the “second-line” therapeutic drugs.  相似文献   

11.
In this study, three kinds of methylated chitosan containing different aromatic moieties were synthesized by two steps, reductive amination and methylation, respectively. The chemical structures of all methylated derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMChC), methylated N-(4-N,N-dimethylaminobenzyl) chitosan chloride (MDMBzChC), and methylated N-(4-pyridinylmethyl) chitosan chloride (MPyMeChC) were characterized by ATR–FTIR and 1H NMR spectroscopy. The complexes between the chitosan derivatives and plasmid DNA at different N/P ratios were characterized by gel electrophoresis, dynamic light scattering, and atomic force microscopic techniques. The smallest particle sizes of these complexes were obtained at N/P ratio of 5 and ranged from 95 to 124 nm while the zeta-potentials were in the range of 18–27 mV. Transfection efficiencies of these complexes were investigated by expression of the plasmid DNA encoding green fluorescence protein (pEGFP-C2) on human hepatoma cells (Huh 7 cells) compared to N,N,N-trimethyl chitosan chloride (TMChC). The rank of transfection efficiency was MPyMeChC > MDMBzChC > TMChC > MDMCMChC, respectively. The cytotoxicity of these complexes was also studied by MTT assay where the MPyMeChC complex exhibited less toxicity than other derivatives even at high N/P ratios. Therefore, MPyMeChC demonstrated potential as its safe and efficient gene carrier.  相似文献   

12.
A kind of biocompatible derivative of chitosan, N-carboxyethylchitosan (CECh) with a degree of substitution of 0.21 (DS 0.21) was synthesized by a Michael addition reaction. The aggregation behavior of CECh in aqueous solution under the effects of pH, polymer concentration, as well as a gemini surfactant, was investigated by turbidity, zeta potential, fluorescence spectroscopy, viscosity, and surface tension measurements. In the pH range of 3-11, the macroscopic phase separation of CECh from water occurs near the isoelectric point (IEP) due to the intense electrostatic attraction, and the intermolecular interaction at pH 4 is stronger than that at pH 10 over the whole CECh concentration region. The critical aggregation concentration (CAC) of CECh/12-n-12 (n = 3, 6) in basic media is determined to be between 0.0010 and 0.0015 mmol/L, and the length of the surfactant spacer is found to play an important role in the interaction of 12-n-12 with CECh.  相似文献   

13.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

14.
Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-14C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with any of the typical substrates of B′-MTs. It was concluded that CTgSs have strict substrate specificity. The Km values of CTgS1 and CTgS2 were 121 and 184 μM with nicotinic acid as a substrate, and 68 and 120 μM with S-adenosyl-l-methionine as a substrate, respectively.  相似文献   

15.
We report the synthesis and characterization of a seven coordinate europium complex, [EuCl3(C10H8N2O2) ·  2CH3OH]. The growing interest in developing efficient light conversion molecular devices (LCMDs) necessitates the need for new fluorescent materials. Ideal physicochemical properties of the materials include ligand absorption, efficient metal to ligand transfer, and strong luminescence with a relatively long decay time. The design of such material requires distinct absorbing (ligand) and emitting (metal ion) components. While Eu3+ cation has a non-degenerate emitting level, 2,2′-bipyridine N,N dioxide is a heterocyclic ligand known to exhibit strong luminescence. Additional characterization is also described, including single crystal X-ray diffraction, IR and UV-Vis spectroscopies and elemental analysis.  相似文献   

16.
A new ligand LH (where LH = N-(picolinoyl)-biurate) has been prepared and characterized. The presence of three amide linkages make this ligand sufficiently flexible to act as N,N,O donor tridentate blocking ligand in the formation of a one dimensional metal-ligand layer like structure. Reaction of LH and dicyanamide (dca) with Co(NO3)2 · 6H2O gives [CoL(dca)]n (1). In this compound picolinamide modulated ligand L coordinated the central Co(II) ion in a meridonal-fashion. The single crystal X-ray crystallography revealed that in 1, dca acts as μ1,5− singly bridging ligand whereas μ1,5− doubly bridging is the more common type. This gives rise to the 1D undulated waves like structure. The Co(II) centre is surrounded in a distorted square pyramidal coordination geometry. The variable temperature magnetic (VTM) susceptibility measurements show that the global feature of the χMT versus T curve for 1 is characteristic of very weak antiferromagnetic interactions through the dicyanamide ligand and between 300 and 5 K the best fit parameter was determined as J = −3.52 cm−1. The X-ray structure, VTM study and UV-Vis spectrum of the compound show that 1 is a low-spin square-pyramidal compound whereas high-spin compounds are more common for the five coordinated cobalt (II) compounds. The X-band EPR spectrum of 1 at room temperature shows only one isotropic band centred at g = 2.08.  相似文献   

17.
This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.  相似文献   

18.
A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3−xPW12O40 (0 ≤ x ≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x = 2 and Cs2-PTA content of 5 wt%. The value is 6 × 10−3 S cm−1 and 1.75 × 10−2 S cm−1 at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6 × 10−7, 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1 × 104/S cm−3 s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.  相似文献   

19.
This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.KEY WORDS: dental caries, mucoadhesive property, nanofibers, thiolated chitosan, α-mangostin  相似文献   

20.
The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0 × 10−3-1.0 M at 1.0 M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 106-fold compared to the expected rate of analogous intermolecular reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号