首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Glucose deprivation is a distinctive feature of the tumor microecosystem caused by the imbalance between poor supply and an extraordinarily high consumption rate. The metabolic reprogramming from mitochondrial respiration to aerobic glycolysis in cancer cells (the “Warburg effect”) is linked to oncogenic transformation in a manner that frequently implies the inactivation of metabolic checkpoints such as the energy rheostat AMP-activated protein kinase (AMPK). Because the concept of synthetic lethality in oncology can be applied not only to genetic and epigenetic intrinsic differences between normal and cancer cells but also to extrinsic ones such as altered microenvironment, we recently hypothesized that stress-energy mimickers such as the AMPK agonist metformin should produce metabolic synthetic lethality in a glucose-starved cell culture milieu imitating the adverse tumor growth conditions in vivo. Under standard high-glucose conditions, metformin supplementation mostly caused cell cycle arrest without signs of apoptotic cell death. Under glucose withdrawal stress, metformin supplementation circumvented the ability of oncogenes (e.g., HER2) to protect breast cancer cells from glucose-deprivation apoptosis. Significantly, representative cell models of breast cancer heterogeneity underwent massive apoptosis (by > 90% in some cases) when glucose-starved cell cultures were supplemented with metformin. Our current findings may uncover crucial issues regarding the cell-autonomous metformin’s anti-cancer actions: (1) The offently claimed clinically irrelevant, non-physiological concentrations needed to observe the metformin’s anti-cancer effects in vitro merely underlie the artifactual interference of erroneous glucose-rich experimental conditions that poorly reflect glucose-starved in vivo conditions; (2) the preferential killing of cancer stem cells (CSC) by metformin may simply expose the best-case scenario for its synthetically lethal activity because an increased dependency on Warburg-like aerobic glycolysis (hyperglycolytic phenotype) is critical to sustain CSC stemness and immortality; (3) the microenvironment-mediated contextual synthetic lethality of metformin should be expected to enormously potentiate the anti-cancer effect of anti-angiogenesis agents that promote severe oxygen and glucose deprivation in certain areas of the tumor tissues.  相似文献   

2.
The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.  相似文献   

3.
Metformin is one of the most widely used anti-diabetic agents in the world, and a growing body of evidence suggests that it may also be effective as an anti-cancer drug. Observational studies have shown that metformin reduces cancer incidence and cancer-related mortality in multiple types of cancer. These results have drawn attention to the mechanisms underlying metformin’s anti-cancer effects, which may include triggering of the AMP-activated protein kinase (AMPK) pathway, resulting in vulnerability to an energy crisis (leading to cell death under conditions of nutrient deprivation) and a reduction in circulating insulin/IGF-1 levels. Clinical trials are currently underway to determine the benefits, appropriate dosage, and tolerability of metformin in the context of cancer therapy. This review highlights fundamental aspects of the molecular mechanisms underlying metformin’s anti-cancer effects, describes the epidemiological evidence and ongoing clinical challenges, and proposes directions for future translational research.  相似文献   

4.
Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009) and CyclinD1 (P = 0.009) expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor) could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors) could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.  相似文献   

5.
Adenosine monophosphate-activated kinase (AMPK) plays a central role in regulating energy homeostasis in eukaryotic cells. AMPK also regulates lipid synthesis by inhibiting acetyl-CoA carboxylase (ACC) and regulates mTOR signaling by activating TSC2. Due to its important roles in cell metabolism, AMPK is an attractive target for metabolic diseases, such as type II diabetes and obesity. AMPK activators, such as metformin, that are used for diabetes treatment are also effective anticancer agents. However, the efficacies of many known AMPK activators are relatively low. For example, metformin activates AMPK at millimolar levels. In this study, we identified a novel family of AMPK activators, namely fluorinated N,N′-diarylureas, that activate AMPK at 1–3 μM concentrations. These novel agents strongly inhibit the proliferation of colon cancer cells. We studied the potential mechanisms of these agents, performed a structure–activity relationship (SAR) study and identified several fluorinated N,N′-diarylureas as potent AMPK activators.  相似文献   

6.
There is a large body of scientific evidence suggesting that 3,3′-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required.  相似文献   

7.
8.
Extensive studies over the years have shown that the AMP-activated kinase (AMPK) exhibits negative regulatory effects on the activation of the mammalian target of rapamycin (mTOR) signaling cascade. We examined the potential involvement of AMPK in the regulation of growth and survival of malignant melanoma cells. In studies using the AMPK activators AICAR or metformin, we found potent inhibitory effects of AMPK activity on the growth of SK-MEL-2 and SK-MEL-28 malignant melanoma cells. Induction of AMPK activity was also associated with inhibition of the ability of melanoma cells to form colonies in an anchorage-independent manner in soft agar, suggesting an important role of the pathway in the control of malignant melanoma tumorigenesis. Furthermore, AICAR-treatment resulted in malignant melanoma cell death and such induction of apoptosis was further enhanced by concomitant statin-treatment. Taken together, our results provide evidence for potent inhibitory effects of AMPK on malignant melanoma cell growth and survival and raise the potential of AMPK manipulation as a novel future approach for the treatment of malignant melanoma.  相似文献   

9.

Background

Metformin has been shown to have a strong anti-proliferative effect in many breast cancer cell lines, mainly due to the activation of the energy sensing kinase, AMP-activated protein kinase (AMPK). MDA-MB-231 cells are aggressive and invasive breast cancer cells that are known to be resistant to several anti-cancer agents as well as to the anti-proliferative effect of metformin. As metformin is a glucose lowering drug, we hypothesized that normoglycemia will sensitize MDA-MB-231 cells to the anti-proliferative effect of metformin.

Methods

MDA-MB-231 cells were treated with increasing metformin concentrations in hyperglycemic or normoglycemic conditions. The growth inhibitory effect of metformin was assessed by MTT assay. The expression of several proteins involved in cell proliferation was measured by Western blotting.

Results

In agreement with previous studies, treatment with metformin did not inhibit the growth of MDA-MB-231 cells cultured in hyperglycemic conditions. However, metformin significantly inhibited MDA-MB-231 growth when the cells were cultured in normoglycemic conditions. In addition, we show that metformin-treatment of MDA-MB-231 cells cultured in normoglycemic conditions and not in hyperglycemic conditions caused a striking activation of AMPK, and an AMPK-dependent inhibition of multiple molecular signaling pathways known to control protein synthesis and cell proliferation.

Conclusion

Our data show that normoglycemia sensitizes the triple negative MDA-MB-231 breast cancer cells to the anti-proliferative effect of metformin through an AMPK-dependent mechanism.

General significance

These findings suggest that tight normoglycemic control may enhance the anti-proliferative effect of metformin in diabetic cancer patients.  相似文献   

10.
There is currently tremendous interest in developing anti-cancer therapeutics targeting cell signaling pathways important for both cancer cell metabolism and growth. Several epidemiological studies have shown that diabetic patients taking metformin have a decreased incidence of pancreatic cancer. This has prompted efforts to evaluate metformin, a drug with negligible toxicity, as a therapeutic modality in pancreatic cancer. Preclinical studies in cell line xenografts and one study in patient-derived xenograft (PDX) models were promising, while recently published clinical trials showed no benefit to adding metformin to combination therapy regimens for locally advanced and metastatic pancreatic cancer. PDX models in which patient tumors are directly engrafted into immunocompromised mice have been shown to be excellent preclinical models for biomarker discovery and therapeutic development. We evaluated the response of four PDX tumor lines to metformin treatment and found that all four of our PDX lines were resistant to metformin. We found that the mechanisms of resistance may occur through lack of sustained activation of adenosine monophosphate-activated protein kinase (AMPK) or downstream reactivation of the mammalian target of rapamycin (mTOR). Moreover, combined treatment with metformin and mTOR inhibitors failed to improve responses in cell lines, which further indicates that metformin alone or in combination with mTOR inhibitors will be ineffective in patients, and that resistance to metformin may occur through multiple pathways. Further studies are required to better understand these mechanisms of resistance and inform potential combination therapies with metformin and existing or novel therapeutics.  相似文献   

11.
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non–small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5′-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis–mediated survivin degradation, providing novel insights into the anticancer effects of metformin.  相似文献   

12.
13.
AMP-activated protein kinase (AMPK) is a central metabolic sensor and plays an important role in regulating glucose, lipid and cholesterol metabolism. Therefore, AMPK is a key therapeutic target in diabetes. Recent pilot studies have suggested that diabetes drugs may reduce the risk of cancer by affecting the AMPK pathway. However, the association between AMPK and the proliferation of hepatocellular carcinoma (HCC) is unknown. In this study, we investigated the relationship between AMPK activity and the proliferation of HCC in cell lines, nude mice and human clinic samples. We first investigated the relationship between AMPK activity and cell proliferation in two HCC cell lines, PLC/PRF/5 and HepG2, by two AMPK activators, 5-aminoimidazole-4-carboxamide-1-h-D-ribofuranoside (AICAR) and metformain. AICAR and metformin treatment significantly inhibited the proliferation of HCC cells and induced cell cycle arrest at G1-S checkpoint. We then observed that metformin abrogated the growth of HCC xenografts in nude mice. The clinical pathology of AMPK activity in HCC, including cell proliferation, differential grade, tumor size and microvessel density, was studied by using 30 clinical tissue samples. In HCC tissue samples, phosphorylated AMPK was expressed mainly in cytoplasm. AMPK activity decreased significantly in HCC in comparison with paracancerous liver tissues (P<0.05). AMPK activity was negatively correlated with the level of Ki-67 (a marker of cell proliferation), differential degradation and tumor size (P<0.05), but not with microvessel density, hemorrhage or necrosis in HCC. Our findings suggest that AMPK activity inhibits the proliferation of HCC and AMPK might be an effective target for prevention and treatment of HCC.  相似文献   

14.
Yuanhuacine (YC), a daphnane diterpenoid from the flowers of Daphne genkwa, exhibited a potential growth inhibitory activity against human non-small cell lung cancer (NSCLC) cells. YC also suppressed the invasion and migration of lung cancer cells. However, the precise molecular mechanisms remain to be elucidated. In the present study, we report that YC significantly activated AMP-activated protein kinase (AMPK) signaling pathway and suppressed mTORC2-mediated downstream signaling pathway in H1993 human NSCLC cells. AMPK plays an important role in energy metabolism and cancer biology. Therefore, activators of AMPK signaling pathways can be applicable to the treatment of cancer. YC enhanced the expression of p-AMPKα. The co-treatment of YC and compound C (an AMPK inhibitor) or metformin (an AMPK activator) also confirmed that YC increases p-AMPKα. YC also suppressed the activation of the mammalian target of rapamycin (mTOR) expression, a downstream target of AMPK. Further study revealed that YC modulates mTORC2-associated downstream signaling pathways with a decreased expressions of p-Akt, p-protein kinase C alpha (PKCα), p-ras-related C3 botulinum toxin substrate 1 (Rac1) and filamentous actin (F-actin) that are known to activate cell growth and organize actin cytoskeleton. In addition, YC inhibited the tumor growth in H1993 cell-implanted xenograft nude mouse model. These data suggest the YC could be a potential candidate for cancer chemotherapeutic agents derived from natural products by regulating AMPK/mTORC2 signaling pathway and actin cytoskeleton organization.  相似文献   

15.

Introduction

Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin–4, a glucagon-like peptide–1 (GLP–1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin–4 and metformin using a prostate cancer model.

Methods

Prostate cancer cells were treated with Exendin–4 and/or metformin. Cell proliferation was quantified by growth curves and 5-bromo–2′-deoxyuridine (BrdU) assay. TUNEL assay and AMP-activated protein kinase (AMPK) phosphorylation were examined in LNCaP cells. For in vivo experiments, LNCaP cells were transplanted subcutaneously into the flank region of athymic mice, which were then treated with Exendin–4 and/or metformin. TUNEL assay and immunohistochemistry were performed on tumors.

Results

Exendin–4 and metformin additively decreased the growth curve, but not the migration, of prostate cancer cells. The BrdU assay revealed that both Exendin–4 and metformin significantly decreased prostate cancer cell proliferation. Furthermore, metformin, but not Exendin–4, activated AMPK and induced apoptosis in LNCaP cells. The anti-proliferative effect of metformin was abolished by inhibition or knock down of AMPK. In vivo, Exendin–4 and metformin significantly decreased tumor size, and further significant tumor size reduction was observed after combined treatment. Immunohistochemistry on tumors revealed that the P504S and Ki67 expression decreased by Exendin–4 and/or metformin, and that metformin increased phospho-AMPK expression and the apoptotic cell number.

Conclusion

These data suggest that Exendin–4 and metformin attenuated prostate cancer growth by inhibiting proliferation, and that metformin inhibited proliferation by inducing apoptosis. Combined treatment with Exendin–4 and metformin attenuated prostate cancer growth more than separate treatments.  相似文献   

16.
Accumulating evidence demonstrates that polyphenols in natural products are beneficial against human lethal diseases such as cancer and metastasis. The underlying mechanisms of anti-cancer effects are complex. Recent studies show that several polyphenols, including epigallocatechin-3-gallate (EGCG) in green tea and resveratrol in red wine, inhibit angiogenesis when administrated orally. These polyphenols have direct effects on suppression of angiogenesis in several standard animal angiogenesis models. Because angiogenesis is involved in many diseases such as cancer, diabetic retinopathy and chronic inflammations, the discovery of these polyphenols as angiogenesis inhibitors has shed light on the health beneficial mechanisms of natural products, which are rich in these molecules. At the molecular level, recent studies have provided important information on how these molecules inhibit endothelial cell growth. Perhaps the greatest therapeutic advantage of these small natural molecules over large protein compounds is that they can be administrated orally without causing severe side effects. It is anticipated that more polyphenols in natural products will be discovered as angiogenesis inhibitors and that these natural polyphenols could serve as leading structures in the discovery of more potent, synthetic angiogenesis inhibitors.  相似文献   

17.
Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)‐activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express ‐α1, ‐β1, ‐γ1 and ‐γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo‐responsive and ‐resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co‐carboxylase (ACC) and enhanced β‐oxidation of fatty acid and (4) attenuated mTOR‐S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin‐mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK‐ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down‐regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild‐type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti‐proliferative therapeutic that can act through both AMPK‐dependent as well as AMPK‐independent pathways.  相似文献   

18.
Agonists of retinoid X receptors (RXRs), which include the natural 9-cis-retinoic acid and synthetic analogs, are potent inducers of growth arrest and apoptosis in some cancer cells. As such, they are being used in clinical trials for the treatment and prevention of solid tumors and are used to treat cutaneous T cell lymphoma. However, the molecular mechanisms that underlie the anti-cancer effects of RXR agonists remain unclear. Here, we show that a novel pro-apoptotic pathway that is induced by RXR agonist is negatively regulated by casein kinase 1alpha (CK1alpha). CK1alpha associates with RXR in an agonist-dependent manner and phosphorylates RXR. The ability of an RXR agonist to recruit CK1alpha to a complex with RXR in cells correlates inversely with its ability to inhibit growth. Remarkably, depletion of CK1alpha in resistant cells renders them susceptible to RXR agonist-induced growth inhibition and apoptosis. Our study shows that CK1alpha can promote cell survival by interfering with RXR agonist-induced apoptosis. Inhibition of CK1alpha may enhance the anti-cancer effects of RXR agonists.  相似文献   

19.
The steroid hormone progesterone is an essential regulator of the cellular processes that are required for the development and maintenance of reproductive function. The diverse effects of progesterone are mediated by the progesterone receptor (PR). The functions of the PR are regulated not only by ligands but also by modulators of various cell signaling pathways. However, it is not clear which energy state regulates PR activity. AMP-activated protein kinase (AMPK), a serine/threonine protein kinase, is a key modulator of energy homeostasis. Once activated by an increasing cellular AMP:ATP ratio, AMPK switches off ATP-consuming processes and switches on ATP-producing processes. We found that both 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin, traditional pharmacological activators of AMPK, inhibited the PR pathway, as evidenced by progesterone response element (PRE)-driven luciferase activity and PR target gene expression. Compound C, an inhibitor of AMPK, partly but significantly reversed the anti-PR effects of AICAR and metformin. The downregulation of endogenous AMPK by small interfering RNAs (siRNAs) stimulated PR activity. AMPK activation by AICAR decreased the progesterone-induced phosphorylation of PR at serine 294 and inhibited the recruitment of PR to an endogenous PRE. Taken together, our data suggest that AMPK, an energy sensor, is involved in the regulation of PR signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号