首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

2.
To clarify the effects of long-term warming on ecosystem matter cycling, we conducted an in situ 7-year experimental warming (2009–2015) using infrared heaters in a cool temperate semi-natural grassland in Japan. We measured plant aboveground biomass, soil total C and N, soil inorganic N (NH4 +-N and NO3 ?-N), and soil microbial biomass for 7 years (2009–2015). We also measured heterotrophic respiration for 2 years (2013–2014) and assessed net N mineralization and nitrification in 2015. We found that warming immediately increased plant aboveground biomass, but this effect ceased in 2013. However, the soil microbial biomass was continuously depressed by warming. Soil inorganic N concentrations in warmed plots substantially increased in the later years of the experiment (2013–2015) and the potential net N mineralization rate was also higher than in the earlier years. In contrast, heterotrophic respiration decreased with warming in 2013–2014. Our observations indicate that long-term warming has a contrasting effect on plants and soil microbes. In addition, the warming could have different effects on subterranean C and N cycling. To enhance the accuracy of estimation of future climate change, it is essential to continuously observe the warming effects on ecosystems and to focus on the change in subterranean C and N cycling.  相似文献   

3.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

4.
Peatlands store 30% of the world’s terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth.  相似文献   

5.
Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13‐year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000–2006) to 30% in the next 6 years (2007–2012). The two‐stage warming stimulation of soil respiration was closely related to warming‐induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming‐induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming‐induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming‐induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.  相似文献   

6.
In an effort to elucidate the factors affecting soil N dynamics in the Dry Chaco ecosystem, soil respiration and microbial biomass N were measured for one year underneath 5 vegetation types: a leguminous tree (Prosopis flexuosa DC), a non-leguminous tree (Aspidosperma quebracho-blanco Schlecht.), a non leguminous shrub (Larrea spp.), the open interspaces, and a pure grassland. Ammonifier and nitrifier densities and N content in litter were also measured in some cases. Results were compared with previously reported N mineralization rates and soil fertility.During the dry season microbial biomass N and net N mineralization were low, while accretion of easily mineralizable C occurred (estimated through soil respiration rates in lab under controlled temperature and moisture). With the onset of rain, microbial biomass N and N mineralization increased markedly, resulting in a decrease in easily mineralizable C. Throughout the wet season N mineralization varied with soil moisture while microbial biomass N remained consistently high. Mean values of immobilized N in this ecosystem were high (20–140 mg kg–1), of about the same order of magnitude as accumulated net N mineralization (50–150 mg kg–1 yr–1). Microbial decay in the dry season, considered as a source of easily mineralizable N, accounted for only 40% of gross N mineralization increase at the beginning of the wet season. Ammonifier densities correlated significantly with soil moisture and N mineralization, but nitrifiers did not.The highest values of total N, N mineralization, inorganic N, microbial biomass N, nitrifier densities, N content in litter, total organic C and easily mineralizable C were found under Prosopis and the lowest values under shrubs and the interspaces. The main differences between tree species were in N mineralization at the beginning of the wet season, in total and inorganic N pools, and in nitrifier densities; all of which were significantly lower under Aspidosperma than under Prosopis.N mineralization in the pure grassland was very low despite high values of total N and C sources. Although N immobilized in microbial biomass was similarly high under Aspidosperma, Prosopis and the pure grassland, net N mineralization rates were quite different.  相似文献   

7.
The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.  相似文献   

8.
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.  相似文献   

9.
Predictions of warming and drying in the Mediterranean and other regions require quantifying of such effects on ecosystem carbon dynamics and respiration. Long‐term effects can only be obtained from forests in which seasonal drought is a regular feature. We carried out measurements in a semiarid Pinus halepensis (Aleppo pine) forest of aboveground respiration rates of foliage, Rf, and stem, Rt over 3 years. Component respiration combined with ongoing biometric, net CO2 flux [net ecosystem productivity (NEP)] and soil respiration measurements were scaled to the ecosystem level to estimate gross and net primary productivity (GPP, NPP) and carbon‐use efficiency (CUE=NPP/GPP) using 6 years data. GPP, NPP and NEP were, on average, 880, 350 and 211 g C m?2 yr?1, respectively. The above ground respiration made up half of total ecosystem respiration but CUE remained high at 0.4. Large seasonal variations in both Rf and Rt were not consistently correlated with seasonal temperature trends. Seasonal adjustments of respiration were observed in both the normalized rate (R20) and short‐term temperature sensitivity (Q10), resulting in low respiration rates during the hot, dry period. Rf in fully developed needles was highest over winter–spring, and foliage R20 was correlated with photosynthesis over the year. Needle growth occurred over summer, with respiration rates in developing needles higher than the fully developed foliage at most times. Rt showed a distinct seasonal maximum in May irrespective of year, which was not correlated to the winter stem growth, but could be associated with phenological drivers such as carbohydrate re‐mobilization and cambial activity. We show that in a semiarid pine forest photosynthesis and stem growth peak in (wet) winter and leaf growth in (dry) summer, and associated adjustments of component respiration, dominated by those in R20, minimize annual respiratory losses. This is likely a key for maintaining high CUE and ecosystem productivity similar to much wetter sites, and could lead to different predictions of the effect of warming and drying climate on productivity of pine forests than based on short‐term droughts.  相似文献   

10.
Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution chemistry measured below the organic soil layer and below the rooting zone and water fluxes estimated with hydrological models were combined to calculate element budgets. Remarkably high N leaching was observed at the NL heath with 18 and 6.4 kg N ha–1 year–1 of NO3–N and NH4–N leached from the control plots, respectively, indicating that this site is nitrogen saturated. Increased soil temperature of +0.5°C in the heated plots almost doubled the concentrations and losses of NO3–N and DON at this site. Temperature also increased mobilization of N in the O horizon at the UK and DK heaths in the first year, but, because of high retention of N in the vegetation or mineral soil, there were no significant effects of warming on seepage water NO3–N and NH4–N. Retention of P was high at all three sites. In several cases, drought increased concentrations of elements momentarily, but element fluxes decreased because of a lower flux of water. Seepage water DOC and DON was highly significantly correlated at the UK site where losses of N were low, whereas losses of C and N were uncoupled at the NL site where atmospheric N input was greatest. Based on N budgets, calculations of the net change in the C sink or source strength in response to warming suggest no change or an increase in the C sink strength during these early years.  相似文献   

11.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   

12.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

13.
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.  相似文献   

14.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

15.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

16.
Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.  相似文献   

17.
Climatic change is predicted to alter rates of soil respiration and assimilation of carbon by plants. Net loss of carbon from ecosystems would form a positive feedback enhancing anthropogenic global warming. We tested the effect of increased heat input, one of the most certain impacts of global warming, on net ecosystem carbon exchange in a Rocky Mountain montane meadow. Overhead heaters were used to increase the radiative heat flux into plots spanning a moisture and vegetation gradient. We measured net whole-ecosystem CO2 fluxes using a closed-path chamber system, relatively nondisturbing bases, and a simple model to compensate for both slow chamber leaks and the CO2 concentration-dependence of photosynthetic uptake, in 1993 and 1994. In 1994, we also measured soil respiration separately. The heating treatment altered the timing and magnitude of net carbon fluxes into the dry zone of the plots in 1993 (reducing uptake by ≈100 g carbon m–2), but had an undetectable effect on carbon fluxes into the moist zone. During a strong drought year (1994), heating altered the timing, but did not significantly alter the cumulative magnitude, of net carbon uptake in the dry zone. Soil respiration measurements showed that when differences were detected in dry zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by temperature-driven changes in carbon output from soil respiration. When differences were detected in dry-zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by a temperature-driven changes in carbon output from soil respiration. Regression analysis suggested that the reduction in carbon inputs from plants was due to a combination of two soil moisture effects: a direct physiological response to decreased soil moisture, and a shift in plant community composition from high-productivity species to low-productivity species that are more drought tolerant. These results partially support predictions that warming may cause net carbon losses from some terrestrial ecosystems. They also suggest, however, that changes in soil moisture caused by global warming may be as important in driving ecosystem response as the direct effects of increased soil temperature.  相似文献   

18.
Climate Change Affects Carbon Allocation to the Soil in Shrublands   总被引:1,自引:0,他引:1  
Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes may affect the supply of carbon and energy to the soil microbial population and subsequently alter decomposition and mineralization, important ecosystem processes in carbon and nutrient cycling. In this study, carried out within the cross-European research project CLIMOOR, the effect of climate change, resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a 14C-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during the year and a drought period in the growing season. Differences in climate, soil, and plant characteristics resulted in a gradient in the severity of the drought effects on net carbon uptake by plants with the impact being most severe in Spain, followed by Denmark, with the UK showing few negative effects at significance levels of p 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the 14C fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects of warming were not significant, but, as with the drought treatment, a negative effect on carbon allocation to soil microbial biomass was found. The changes in carbon allocation to soil microbial biomass at the northern sites in this study indicate that soil microbial biomass is a sensitive, early indicator of drought- or temperature-initiated changes in these shrubland ecosystems. The reduced supply of substrate to the soil and the response of the soil microbial biomass may help to explain the observed acclimation of CO2 exchange in other ecosystems.  相似文献   

19.
Carbon Dioxide Exchange Between an Old-growth Forest and the Atmosphere   总被引:4,自引:1,他引:3  
Eddy-covariance and biometeorological methods show significant net annual carbon uptake in an old-growth Douglas-fir forest in southwestern Washington, USA. These results contrast with previous assumptions that old-growth forest ecosystems are in carbon equilibrium. The basis for differences between conventional biomass-based carbon sequestration estimates and the biometeorologic estimates are discussed. Annual net ecosystem exchange was comparable to younger ecosystems at the same latitude, as quantified in the AmeriFlux program. Net ecosystem carbon uptake was significantly correlated with photosynthetically active radiation and air temperature, as well as soil moisture and precipitation. Optimum ecosystem photosynthesis occurred at relatively cool temperatures (5°–10°C). Understory and soil carbon exchange always represented a source of carbon to the atmosphere, with a strong seasonal cycle in source strength. Understory and soil carbon exchange showed a Q10 temperature dependence and represented a substantial portion of the ecosystem carbon budget. The period of main carbon uptake and the period of soil and ecosystem respiration are out of phase, however, and driven by different climatic boundary conditions. The period of strongest ecosystem carbon uptake coincides with the lowest observed values of soil and ecosystem respiration. Despite the substantial contribution of soil, the overall strength of the photosynthetic sink resulted in the net annual uptake. The net uptake estimates here included two correction methods, one for advection and the other for low levels of turbulence.  相似文献   

20.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号