首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.  相似文献   

2.
We have been studying LET and ion species dependence of RBE in mutation frequency and mutation spectrum of deletion pattern of exons in hprt locus. Normal human skin fibroblasts were irradiated with heavy-ion beams, such as carbon- (290 MeV/u and 135 MeV/u), neon- (230 MeV/u and 400 MeV/u), silicon- (490 MeV/u) and iron- (500 MeV/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at national Institute of Radiological Sciences (NIRS). Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies and deletion spectrum of exons was analyzed by multiplex PCR. The LET-RBE curves of mutation induction for carbon- and neon-ion beams showed a peak around 75 keV/micrometers and 155 keV/micrometers, respectively. On the other hand, there observed no clear peak for silicon-ion beams. The deletion spectrum of exons was different in induced mutants among different ion species. These results suggested that quantitative and qualitative difference in mutation occurred when using different ion species even if similar LET values.  相似文献   

3.
We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.  相似文献   

4.
Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124keVμm(-1). In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290keVμm(-1). We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M(2) pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keVμm(-1) radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0keVμm(-1) and 27% for 101-124keVμm(-1)). Therefore, the 290keVμm(-1) heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.  相似文献   

5.
Heavy‐ion irradiation is a powerful mutagen that possesses high linear energy transfer (LET). Several studies have indicated that the value of LET affects DNA lesion formation in several ways, including the efficiency and the density of double‐stranded break induction along the particle path. We assumed that the mutation type can be altered by selecting an appropriate LET value. Here, we quantitatively demonstrate differences in the mutation type induced by irradiation with two representative ions, Ar ions (LET: 290 keV μm?1) and C ions (LET: 30.0 keV μm?1), by whole‐genome resequencing of the Arabidopsis mutants produced by these irradiations. Ar ions caused chromosomal rearrangements or large deletions (≥100 bp) more frequently than C ions, with 10.2 and 2.3 per mutant genome under Ar‐ and C‐ion irradiation, respectively. Conversely, C ions induced more single‐base substitutions and small indels (<100 bp) than Ar ions, with 28.1 and 56.9 per mutant genome under Ar‐ and C‐ion irradiation, respectively. Moreover, the rearrangements induced by Ar‐ion irradiation were more complex than those induced by C‐ion irradiation, and tended to accompany single base substitutions or small indels located close by. In conjunction with the detection of causative genes through high‐throughput sequencing, selective irradiation by beams with different effects will be a powerful tool for forward genetics as well as studies on chromosomal rearrangements.  相似文献   

6.
Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.  相似文献   

7.
The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.  相似文献   

8.
J Thacker 《Mutation research》1986,160(3):267-275
DNA from 58 independent HPRT-deficient mutants of V79 hamster cells induced by ionising radiation was analysed by Southern blot hybridization to a full-length hamster hprt cDNA. About half of the gamma-ray-induced mutants (20/43) were apparently total gene deletions, because they lacked all functional hprt gene sequences hybridizing to the cDNA probe. Another 10 mutants showed various partial deletions and/or rearrangements of the hprt gene. The remaining 13 mutants showed no detectable change in comparison to the structure of the normal gene, which correlated well with previous characterization of these mutants indicating that most carry point mutations in the hprt gene. However, it is probable that some of these point mutations occurred spontaneously rather than being radiation-induced. A smaller number of alpha-particle induced mutants gave similar results: out of a total of 15 mutants, 6 appeared to be total gene deletions, 5 had partial deletions and/or rearrangements, and 4 had no detectable changes. Thus, 70% or more of radiation-induced HPRT-deficient mutants arise through large genetic changes, especially deletions of all or part of the hprt gene. This result is to be contrasted with data published previously by ourselves and others indicating that the majority of spontaneous and ethyl methanesulphonate-induced mutations of hprt and similar genes arise by point mutation.  相似文献   

9.
The induction of inactivation and mutation to thioguanine-resistance in cultured human diploid fibroblasts was studied after exposure to ionising radiations with LET's in the range 20--470 keV micrometer-1. Unique r.b.e. values were obtained for inactivation and mutation induction with nine different qualities of radiation. The plot of r.b.e. verus LET gave humped curves for both endpoints; r.b.e. maxima were in the LET range 90--200 keV micrometer-1 but the maximum r.b.e. value for mutation induction was almost twice that for inactivation. The accuracy of estimates of mutation induction are discussed with regard to possible selective effects against mutants during post-irradiation growth.  相似文献   

10.
The induction of resistance to 6-thioguanine by heavy ion exposure was investigated with various accelerated ions (oxygen-uranium) up to linear energy transfer (LET) values of about 15000 keV/µm.31 y Survival curves are exponential with fluence; mutation induction shows a linear dependence. Cross-sections (i: inactivation, m: mutation) were derived from the respective slopes. Generally, i rises over the whole LET range, but separateas into different declining curves for single ions with LET values above 200 keV/µm. Similar behaviour is seen for m. The new SIS facility at GSI, Darmstadt, makes it possible to study the effects of ions with the same LET but very different energies and track structures. Experiments using nickel and oxygen ions (up to 400 MeV/u) showed that inactivation cross-sections do not depend very much on track structure, i.e. similar values are found with different ions at the same LET. This is not the case for mutation induction, where very energetic ions display considerably smaller induction cross-sections compared with low-energy ions of identical LET. Preliminary analyses using the polymerase chain reaction (PCR) demonstrate that even heavy ions cause small alterations (small deletions or base changes). The proportion of the total deletions seems to increase with LET.Submitted paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

11.
The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.  相似文献   

12.
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>~30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.  相似文献   

13.
Miazaki, Watanabe, Kumagai and their colleagues reported that induction of HPRT(-) mutants by X-rays in cultured human cells was prevented by ascorbate added 30min after irradiation. They attributed extinction of induced mutation to neutralization by ascorbate of radiation-induced long-lived mutagenic radicals (LLR), found using spectroscopy to have half-lives of minutes or hours. We find that post-irradiation treatment with ascorbate reduces, but does not eliminate, induction of CD59(-) mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon-ions (LET of 100KeV/microm). A(L) cells contain a standard set of Chinese hamster ovary (CHO) chromosomes and a single copy of human chromosome 11 containing the CD59 gene which encodes the CD59 cell surface antigen, a convenient marker for mutation. RibCys [2(R, S)-D-ribo-(1',2',3',4'-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid] a 'prodrug' of l-cysteine which also scavenges LLR, had a similar but lesser effect on induced mutation. DMSO, which scavenges classical radicals like H* and OH* but not LLR, also reduced mutation, but only when it was present during irradiation. The lethality of carbon-ions was not altered by ascorbate, RibCys no matter when added. Post-radiation addition of ascorbate and RibCys also affected the quality of CD59(-) mutations induced by carbon-ions. The major change in mutant spectra was a reduction in the prevalence of small, intragenic mutations (mutations not detected by PCR) and in the prevalence of unstable, complicated mutants, which display high levels of persistent chromosomal instability. Thus, ascorbate and RibCys may suppress some kinds of mutations induced by ionizing radiation including those displaying aspects of radiation-induced genomic instability. Countering the effects of both classical radicals and LLR may be important in preventing genetic diseases.  相似文献   

14.
Heavy‐ion beams have been widely utilized as a novel and effective mutagen for mutation breeding in diverse plant species, but the induced mutation spectrum is not fully understood at the genome scale. We describe the development of a multiplexed and cost‐efficient whole‐exome sequencing procedure in rice, and its application to characterize an unselected population of heavy‐ion beam‐induced mutations. The bioinformatics pipeline identified single‐nucleotide mutations as well as small and large (>63 kb) insertions and deletions, and showed good agreement with the results obtained with conventional polymerase chain reaction (PCR) and sequencing analyses. We applied the procedure to analyze the mutation spectrum induced by heavy‐ion beams at the population level. In total, 165 individual M2 lines derived from six irradiation conditions as well as eight pools from non‐irradiated ‘Nipponbare’ controls were sequenced using the newly established target exome sequencing procedure. The characteristics and distribution of carbon‐ion beam‐induced mutations were analyzed in the absence of bias introduced by visual mutant selections. The average (±SE) number of mutations within the target exon regions was 9.06 ± 0.37 induced by 150 Gy irradiation of dry seeds. The mutation frequency changed in parallel to the irradiation dose when dry seeds were irradiated. The total number of mutations detected by sequencing unselected M2 lines was correlated with the conventional mutation frequency determined by the occurrence of morphological mutants. Therefore, mutation frequency may be a good indicator for sequencing‐based determination of the optimal irradiation condition for induction of mutations.  相似文献   

15.
Experiments were designed to determine the association between the repair of gamma-radiation-induced DNA double-strand breaks (DSB) and the induction of 700-1000 bp long deletions (Lac(-)----Lac+), base substitutions (leuB19----Leu+), and frameshifts (trpE9777----Trp+) in Escherichia coli K-12. Over the range of 2.5-20 krad, deletions were induced with linear kinetics, as has been shown for the induction of DSB, while the induction kinetics of base substitutions and frameshifts were curvilinear. Like the repair of DSB, deletion induction showed an absolute requirement for an intact recB gene as well as a dependency on the type of preirradiation growth medium; these requirements were not seen for base substitutions or frameshifts. In addition, about 80% of the spontaneous deletions were absent in the recB21 strain. A recC1001 mutation, which confers a 'hyper-Rec' phenotype, increased the rate of gamma-radiation-induced deletions as well as the low-dose production of base substitutions and frameshifts. A recF143 mutation increased the yield of gamma-radiation-induced deletions without increasing base substitutions or frameshifts. A mutS mutation markedly enhanced the gamma-radiation induction of frameshifts, and had a slight effect on base substitutions, but did not affect the induction of deletions. Resistance to gamma-irradiation and the capacity to repair DSB (albeit at about half the normal rate) were restored to the radiosensitive recB21 strain by the addition of the sbcB21 and sbcC201 mutations. However, the radioresistant recB sbcBC strain, which is recombination proficient via the RecF pathway, was still grossly deficient in the ability to produce deletions. A model for deletion induction as a by-product of the recB-dependent (Chi-dependent) repair of gamma-radiation-induced DSB is discussed, as is the inability to detect deletions in cells that use only the recF-dependent (Chi-independent) mechanism to repair DSB.  相似文献   

16.
A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly "heavier" ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.  相似文献   

17.
18.
The molecular structure of mutants induced in human lymphoblast cells by 500 cGy X rays in the presence of the radioprotector cysteamine (25 mM) has been compared with that induced by an equally mutagenic treatment of 150 cGy X rays alone. Sets of mutants at the hypoxanthine-guanine phosphoribosyl transferase locus were analyzed by Southern blot. Of 24 mutants induced by X rays in the presence of cysteamine, 67% exhibited no change in the restriction fragment pattern and thus were defined as point mutations; 8% appeared to be total gene deletions and 25% were partial deletions or rearrangements. In contrast, among 28 mutants induced by X rays alone (Liber et al., Mutat. Res. 178, 143-153 (1987)), 46% were point mutations, while 50% were total gene deletions and only 1 mutant (4%) was a partial deletion or rearrangement. Thus mutants isolated in the presence of cysteamine consisted of more point mutations and partial deletions/rearrangements, and considerably fewer total gene deletions. These results suggest that cysteamine may protect selectively against processes which lead to large-scale molecular changes.  相似文献   

19.
20.
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号