首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Prostate specific antigen-alpha1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.  相似文献   

2.
A biosensor chip utilizing surface plasmon resonance (SPR) was fabricated for detecting anti-glutamic acid decarboxylase (GAD) antibody, which is an indicator of the presence of type I diabetes mellitus. The sensor surfaces were constructed from various thiol mixtures of different molar ratios of 3-mercaptopropionic acid (3-MPA) to 11-mercaptoundecanoic acid (11-MUA). To determine the surface characteristics of the different alkanethiol monolayers, several quantitative and kinetic measurements were carried out. The extent of immobilization of streptavidin (SA) and biotin-GAD (the anti-GAD receptor) and the immune response of anti-GAD antibody against GAD were measured using the SPR biosensor. The terminal functional group of a thiol has different effects on the adsorption and covalent binding of protein depending on the steric hindrance. The protein chip described herein permits simple, rapid detection of anti-GAD antibody.  相似文献   

3.
An optical gold nanoparticles (AuNPs)-based method was fabricated for the rapid detection of matrix metalloproteinase (MMP) activity and screening potential MMP inhibitors without sophisticated instruments. The diagnosis platform was composed of AuNPs, particular MMP substrates and 6-mercapto-1-hexanol (MCH). The functionalized AuNPs were subjected to specific MMP digestion, and the MMP found the substrate on AuNPs, such that the AuNPs lost shelter and MCH increased the attraction force between AuNPs. Consequently, AuNPs aggregation and a color change from red to purple with increasing MMP concentration were observed. The surface plasmon resonance (SPR) of the formed AuNPs allowed for the quantitative detection of MMP activity. A sensitive linear correlation existed between the absorbance and the activity of the MMPs, which ranged from 10 ng/mL to 700 ng/mL in NTTC buffer and plasma samples. The proposed colorimetric method could be accomplished in a homogeneous solution with one-step operation in 30 min and has been successfully applied to the determination of particular MMP activity in plasma samples, in which the results are consistent with substrate zymography. This technology may become a simple platform for parallel screening a number of inhibitors and offer an alternative method to studying the efficiency of inhibitors for suppressing MMP activity. The absorbance ratio at 625 nm and 525 nm (A(625)/A(525)) confirmed the efficiency of the inhibitors as observed in substrate zymography. The IC(50) of ONO-4817 and galardin for MMP-1, MMP-2 and MMP-7 determined by the proposed colorimetric method was similar to the results of substrate zymography.  相似文献   

4.
To enhance the feasibility of surface plasmon resonance (SPR) immunosensor as a tool for diagnosing type I diabetes, we enhanced the sensitivity of immunoresponse for detecting the monoclonal anti-glutamic acid decarboxylase (GAD) antibody by modification of mixed self-assembled monolayers (SAMs). The effects of the different mixed SAMs were evaluated with respect to the degree of streptavidin immobilization, the degree of biotin-GAD immobilization, and the immunoresponse sensitivity. Consequently, the sensitivity of the immunoresponse for the detection of anti-GAD antibody was enhanced as a result of the reduction in steric hindrance brought about by using SAMs of heterogeneous lengths. The immunoresponse for detecting the monoclonal anti-GAD antibody was also enhanced with the reduction of the excess immobilization of biotin-GAD and the minimization of non-specific binding that resulted from the simple substitution of the spacer from a carboxylic-terminated SAM for the hydroxyl-terminated SAM.  相似文献   

5.
SPR biosensing is increasingly popular for the detection of a multitude of biomolecules. It offers label-free detection and study of proteins, nucleic acids, and other biomolecules in real time. A recent trend involves incorporation of AuNPs, either within the sensing surface itself or as signal enhancing tagging molecules. The importance of AuNP and detecting agent spacing is described and techniques using macromolecular spacing aids are highlighted. Recent methods to enhance SPR detection capabilities using gold nanoparticles are reviewed, as well as device fabrication and the results of incorporation. SPR detection is a highly versatile method for the detection of biomolecules and, with the incorporation of AuNPs, shows promise in extending it to a number of new applications.  相似文献   

6.
An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2′:5′,2″-terthiophene-3′-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H2O2 reduction. The catalytic reduction was monitored amperometrically at −0.4 V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25 pg/ml and the detection limit was determined to be 2 pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG.  相似文献   

7.
In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications.  相似文献   

8.
An immunosensor based on surface plasmon resonance (SPR) with enhanced performance was developed through a mixed self-assembled monolayer. A mixture of 16- mercaptohexadecanic acid (16-MHA) and 1-undecanethiol with various molar ratios was self-assembled on gold (Au) surface and the carboxylic acid groups of 16-MHA were then coordinated to Zn ions by exposing the substrate to an ethanolic solution of Zn(NO(3))(2)d6H2O. The antibody was immobilized on the SPR surface by exposing the functionalized substrate to the desired solution of antibody in phosphatebuffered saline (PBS) molecules. The film formation in series was confirmed by SPR and atomic force microscopy (AFM). The functionalized surface was applied to develop an SPR immunosensor for detecting human serum albumin (HSA) and the estimated detection limit (DL) was 4.27 nM. The limit value concentration can be well measured between ill and healthy conditions.  相似文献   

9.
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins. Recognition of CEA is needed to monitor the physiological status of the patient for treatment and also it is important to assess the severity of the disease. In this work, we reported a novel sandwich‐type electrochemical immunosensor based on gold nanoparticles functionalized cysteamine‐glutaraldehyde (AuNPs‐CysA‐GA) and it successfully designed to detection of the CEA biomarker in a human plasma sample. The AuNPs‐CysA‐GA provides a large surface area for the effective immobilization of CEA antibody, as well as it ascertains the bioactivity and stability of immobilized CEA antigens. Biotinylated‐anti‐CEA antibody (Ab1) was immobilized on the surface of glassy carbon electrode (GCE) modified AuNPs‐CysA‐GA. Also, secondary antibody (HRP‐Ab2) was costed immobilized to complete the sandwich part of immunosensor. Field emission scanning electron microscope (FE‐SEM and EDS), was employed to monitor the sensor fabrication procedure. The immunosensor was used for the detection of CEA using differential pulse voltammetry (DPVs) technique. The proposed interface led to enhancement of accessible surface area for immobilizing high amount of anti‐CEA antibody, increasing electrical conductivity, boosting stability, and biocompatibility. Finally, the low limit of quantitation (LLOQ) of the proposed immunosensor was obtained as 7 ng/mL with the linear range of 0.001‐5 μg/L. The proposed immunoassay was successfully applied for the monitoring of the CEA in unprocessed human plasma samples. Obtained results paved that the proposed bioassay can be used as a novel bioassay for the clinical diagnosis of cancer based on CEA monitoring.  相似文献   

10.
Gold nanoparticles (AuNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. AuNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, AuNPs might be used as contrast agents in echographic imaging. In this work, we have developed a AuNPs -based system for the in vitro molecular imaging of ovarian carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent AuNPs nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized AuNPs were characterized. Then, the binding and uptake of both naked and functionalized AuNPs were analyzed by laser scanning confocal microscopy in human HeLa cells (ovarian carcinoma) cell line. The results obtained showed that GPC-3-functionalized fluorescent AuNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HeLa cells without affecting their viability.  相似文献   

11.
A facile and sensitive electrochemical immunosensor for detection of human chorionic gonadotrophin (hCG) was designed by using functionalized mesoporous nanoparticles as bionanolabels. To construct high-performance electrochemical immunosensor, Au nanoparticles (AuNPs) dotted carbon nanotubes (MWCNTs)-graphene composite was immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies (Ab(1)) as well as improve the electronic transmission rate. The as-prepared bionanolabels. composed of mesoporous silica nanoparticles (MCM-41) coated with AuNPs through thionine linking, showed good adsorption of horseradish peroxidase-labeled secondary anti-hCG antibody. Interlayer thionine was not only a bridging agent between MCM-41 and AuNPs but also an excellent electron mediator. The approach provided a good linear response range from 0.005 to 500 mIU mL(-1) with a low detection limit of 0.0026 mIU mL(-1). The immunosensor showed good precision, acceptable stability and reproducibility. Satisfactory results were obtained for determination of hCG in human serum samples. The proposed method provides a new promising platform of clinical immunoassay for other biomolecules.  相似文献   

12.
Surface plasmon resonance (SPR) immunobiosensor was developed for the detection of anti-glutamic acid decarboxylase (GAD) antibody. In this study, carboxylic terminated self-assembled monolayer, which was prepared by mixing of 3-mercaptopropionic acid (3-MPA) and 11-mercaptoundecanoic acid (11-MUA) (10:1 ratio), was used to evaluate the effect of external pH on the affinity between streptavidin and sensor surface. At pH values ranging from 4.0 to 5.5, it was found that streptavidin could more easily access onto the sensor surface at higher pH, and the enhanced binding of streptavidin at high pH allowed more extensive immobilization of biotin-GAD, which serves as the epitope for anti-GAD antibody. Consequently, the increase of RU caused by immuno-response between GAD and anti-GAD antibody was remarkably higher when streptavidin was bound on to the sensor surface at pH 5.5 than at pH 4.5. Therefore, we could conclude that the pH of coupling buffer greatly influences the sensitivity of immunosensor.  相似文献   

13.
A self-assembled monolayer of protein G was fabricated to develop an immunosensor based on surface plasmon resonance (SPR), thereby improving the performance of the antibody-based biosensor through immobilizing the antibody molecules (IgG). As such, 11-mercaptoundecanoic acid (11-MUA) was adsorbed on a gold (Au) support, while the non-reactive hydrophilic surface was changed through substituting the carboxylic acid group (-COOH) in the 11-MUA molecule using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholide (EDAC). The formation of the self-assembled protein G layer on the Au substrate and binding of the antibody and antigen were investigated using SPR spectroscopy, while the surface topographies of the fabricated thin films were analyzed using atomic force microscopy (AFM). A fabricated monoclonal antibody (Mab) layer was applied for detectingE. coli O157∶H7. As a result, a linear relationship was achieved between the pathogen concentration and the SPR angle shift, plus the detection limit was enhanced up to 102 CFU/mL.  相似文献   

14.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

15.
The catalytic growth of Au nanoparticles (AuNPs) has been employed in several analytical methods for improving the detection sensitivity, or integrated with the enzyme reactions for the quantitative detection of the respective substrates. However, the catalytic growth of Au nanoparticles do not work in some situations, such as surface plasmon resonance (SPR), electrochemistry, where metal matrices were used, because metal matrices used in these techniques, e.g. Au, are susceptible to metal deposition, which increased the background seriously. In this work, a SiO(2) layer was vapor-deposited on the gold film. The inhibition of metal deposition by this SiO(2) layer was investigated by SPR sensor. The results showed that the SiO(2) layer could avoid the deposition of metal on Au film. With the low background achieved by SiO(2)-coated Au films, sensitive detection of DNA hybridization using the catalytic growth of Au nanoparticles enhanced SPR was demonstrated. The work described here maybe helpful for the development of sensitive bioanalytical methods.  相似文献   

16.
The present study describes the development of a DNA based biosensor to detect Mycobacterium tuberculosis using thermophilic helicase-dependent isothermal amplification (tHDA) and dextrin coated gold nanoparticles (AuNPs) as electrochemical reporter. The biosensor is composed of gold nanoparticles (AuNPs) and amine-terminated magnetic particles (MPs) each functionalized with a different DNA probe that specifically hybridize with opposite ends of a fragment within the IS6110 gene, which is M. tuberculosis complex (MTC) specific. After hybridization, the formed complex (MP-target-AuNP) is magnetically separated from the solution and the AuNPs are electrochemically detected on a screen printed carbon electrode (SPCE) chip. The obtained detection limit is 0.01 ng/μl of isothermally amplified target (105 bp). This biosensor system can be potentially implemented in peripheral laboratories with the use of a portable, handheld potentiostat.  相似文献   

17.
Materials with new and improved functionalities can be obtained by modifying cellulose with gold nanoparticles (AuNPs) via the in situ reduction of a gold precursor or the deposition or covalent immobilization of pre‐synthesized AuNPs. Here, we present an alternative biomolecular recognition approach to functionalize cellulose with biotin‐AuNPs that relies on a complex of 2 recognition elements: a ZZ‐CBM3 fusion that combines a carbohydrate‐binding module (CBM) with the ZZ fragment of the staphylococcal protein A and an anti‐biotin antibody. Paper and cellulose microparticles with AuNPs immobilized via the ZZ‐CBM3:anti‐biotin IgG supramolecular complex displayed an intense red color, whereas essentially no color was detected when AuNPs were deposited over the unmodified materials. Scanning electron microscopy analysis revealed a homogeneous distribution of AuNPs when immobilized via ZZ‐CBM3:anti‐biotin IgG complexes and aggregation of AuNPs when deposited over paper, suggesting that color differences are due to interparticle plasmon coupling effects. The approach could be used to functionalize paper substrates and cellulose nanocrystals with AuNPs. More important, however, is the fact that the occurrence of a biomolecular recognition event between the CBM‐immobilized antibody and its specific, AuNP‐conjugated antigen is signaled by red color. This opens up the way for the development of simple and straightforward paper/cellulose‐based tests where detection of a target analyte can be made by direct use of color signaling.  相似文献   

18.
To improve sensitivity of S. enterica serovar Typhimurium detection, multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) were combined and used as a label to amplify signal in a scanometric based assay. In this study, the MWCNTs/AuNPs nanocomposite was fabricated by directly assemble of Au(3+) to MWCNTs and allowed growing of AuNPs along the MWCNTs surface. This MWCNTs/AuNPs nanocomposite was then attached to anti-S. typhimurium antibody (MWCNTs/AuNPs/Ab(1)) and used as a detecting molecule. Upon binding to Salmonella, they were pre-concentrated by magenetic beads/antibody (MBs/Ab(2)) forming a sandwich immuno-complex which is later spotted on a nitrocellulose membrane coated slide. Silver reduction was applied to amplify signal. The detection limit of 42CFU/ml was achieved when 2% BSA was used as a blocking agent. Given different types of real samples testing, chicken broth was found to give lowest detection limit, followed by orange juice low fat and whole milk. Selectivity testing was performed by using Escherichia coli as interference and found slightly cross-reactivity which could be due to specificity of the Ab used. By virtue of using a slide for multi-samples spotting and a flatbed scanner for signal-read out acquisition, this scano-magneto immunoassay could enable low-cost detection as well as high throughput screening.  相似文献   

19.
We present a new hyperspectral darkfield imaging system with a scanned broadband supercontinuum light source. We observed the specific attachment of the functionalized gold plasmonic nanoparticles (AuNPs) targeting CD44+ human breast cancer cells by conventional and by proposed hyperspectral darkfield microscopy. This wide‐field and low phototoxic hyperspectral imaging system has been successful for performing spectral three‐dimensional (3D) localization and spectroscopic identification of CD44‐targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic‐based imaging, disease detection and treatment in complex biological environment. Presented system capability for 3D NP tracking will also enable investigation of specific sub‐cellular activity with the use of NPs as spectral sensors. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
We demonstrate that protein kinase can be assayed with high sensitivity on peptide-conjugated gold nanoparticles (AuNPs). Phosphorylation of peptides on the AuNP-monolayers was detected by using an anti-phosphotyrosine antibody (alpha-pY) and Cy3-labeled secondary antibody (Cy3-alpha-mIgG) as a probing molecule. When compared to conventional self-assembled monolayers (SAMs), spherical and three-dimensional geometry of AuNPs led to high surface density of peptide substrate and easy accessibility to enzyme, and consequently the resulting AuNP monolayers gave rise to improved detection sensitivity. Blocking of peptide-conjugated AuNPs with a poly(ethylene glycol) (PEG) also contributed to a higher signal-to-background ratio in kinase and its inhibition assays. The use of AuNPs as the platform surface will enable highly sensitive detection of protein kinases in a high-throughput manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号