首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleic acid testing requires skilled personnel and expensive instrumentation. A method for the colorimetric detection of oligonucleotides that combines cellulose microparticles with biomolecular recognition is presented. DNA sequences from Trypanosoma brucei and dengue are used as model targets. Cellulose microparticles (≈20 µm) are bioactived by anchoring anti‐biotin antibodies via fusions that combine a carbohydrate‐binding module (CBM) with the ZZ fragment of protein A. Samples are prepared by incubating DNA probes immobilized on ≈14 nm gold nanoparticles (AuNPs) with biotin‐labeled targets and mixed with bioactive microparticles. The presence of unlabeled targets could also be probed by introducing a second, biotinylated DNA probe. The target:probe‐AuNP hybrids are mixed with and captured by the microparticles, which change color from white to red. Depletion of AuNPs from the liquid is also signaled by a decrease in absorbance at 525 nm. It was possible to detect targets with concentrations as low as 50 n m . In the presence of noncomplementary targets, microparticles remain white and the liquid remains red. The system is able to discriminate targets with a high degree of homology (≈53%). Overall, it is demonstrated that simple systems for the visual detection of nucleic acids can be set up by combining cellulose microparticles with biomolecular recognition agents based on CBMs and AuNPs.  相似文献   

2.
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins. Recognition of CEA is needed to monitor the physiological status of the patient for treatment and also it is important to assess the severity of the disease. In this work, we reported a novel sandwich‐type electrochemical immunosensor based on gold nanoparticles functionalized cysteamine‐glutaraldehyde (AuNPs‐CysA‐GA) and it successfully designed to detection of the CEA biomarker in a human plasma sample. The AuNPs‐CysA‐GA provides a large surface area for the effective immobilization of CEA antibody, as well as it ascertains the bioactivity and stability of immobilized CEA antigens. Biotinylated‐anti‐CEA antibody (Ab1) was immobilized on the surface of glassy carbon electrode (GCE) modified AuNPs‐CysA‐GA. Also, secondary antibody (HRP‐Ab2) was costed immobilized to complete the sandwich part of immunosensor. Field emission scanning electron microscope (FE‐SEM and EDS), was employed to monitor the sensor fabrication procedure. The immunosensor was used for the detection of CEA using differential pulse voltammetry (DPVs) technique. The proposed interface led to enhancement of accessible surface area for immobilizing high amount of anti‐CEA antibody, increasing electrical conductivity, boosting stability, and biocompatibility. Finally, the low limit of quantitation (LLOQ) of the proposed immunosensor was obtained as 7 ng/mL with the linear range of 0.001‐5 μg/L. The proposed immunoassay was successfully applied for the monitoring of the CEA in unprocessed human plasma samples. Obtained results paved that the proposed bioassay can be used as a novel bioassay for the clinical diagnosis of cancer based on CEA monitoring.  相似文献   

3.
A surface plasmon resonance (SPR)-based procedure was developed to determine the effect of antibody modifications on its biomolecular binding behavior. Mouse immunoglobulin G (IgG) was immobilized on a protein A-functionalized gold-coated SPR chip. Goat anti-mouse IgG and its various commercially available modifications (i.e., conjugated with atto 550, atto 647, tetramethylrhodamine isothiocyanate [TRITC], horseradish peroxidase [HRP], or biotin) were employed in exactly the same concentration for the detection of mouse IgG. The various modifications of goat anti-mouse IgG decreased its biomolecular binding to mouse IgG in the order of unmodified>HRP-labeled>atto 550-labeled>biotinylated>TRITC-labeled>atto 647-labeled.  相似文献   

4.
In this work, a highly sensitive, citrate anion‐capped gold nanoparticles (AuNPs)‐based assay for the determination of propranolol in real samples with resonance Rayleigh scattering (RRS) and colorimetry was developed. When AuNPs were prepared by the sodium citrate reduction method, citrate anions self‐assembled on the surface of AuNPs to form supramolecular complex anions. In BR 4.6 buffer solution, propranolol was positively charged and could bind with AuNPs to form larger aggregates through electrostatic force and hydrophobic effects. This results in remarkable enhancement of the RRS intensity and a color change in the AuNPs solution from red to blue via purple. Thus, a highly sensitive RRS and colorimetric assay the for detection of propranolol was developed with a linear range of 0.2–5.2 and 8–112 ng/ml, respectively. In addition, no difference was seen when comparing R‐propranolol with S‐propranolol, therefore, this method could not be used in the recognition of chiral propranolol. However, upon addition of other β‐adrenergic blockers, no phenomenon like that seen with propranolol was observed, meaning that this method can be used for determining the presence of propranolol in a mixture β‐adrenergic blockers. Finally, the optimum conditions, factors influencing the reaction, its mechanism and the reasons for enhancement of the RRS were discussed.  相似文献   

5.
Genetically engineered periplasmic glucose receptors as biomolecular recognition elements on gold nanoparticles (AuNPs) have allowed our laboratory to develop a sensitive and reagentless electrochemical glucose biosensor. The receptors were immobilized on AuNPs by a direct sulfur-gold bond through a cysteine residue that was engineered in position 1 on the protein sequence. The study of the attachment of genetically engineered and wild-type proteins binding to the AuNPs was first carried out in colloidal gold solutions. These constructs were studied and characterized by UV-Vis spectroscopy, transmission electron microscopy, particle size distribution, and zeta potential. We show that the genetically engineered cysteine is important for the immobilization of the protein to the AuNPs. Fabrication of the novel electrochemical biosensor for the detection of glucose used these receptor-coated AuNPs. The sensor showed selective detection of glucose in the micromolar concentration range, with a detection limit of 0.18 microM.  相似文献   

6.
《Luminescence》2003,18(1):25-30
The utility of several streptavidin‐linked fluorescent detector molecules was evaluated on two protein microarray platforms. Tested detector molecules included: Alexa Fluor 546; R‐phycoerythrin (RPE), orange fluospheres; Cy3‐containing liposomes (Large Unilamellar Vesicles, LUV) labelled with Cy3; and an RPE–antibody complex. The two array architectures tested consisted of an array of murine Fc–biotin and an array of murine IgG (the murine IgG array was probed with a biotinylated rabbit anti‐murine IgG). These platforms allowed for the direct comparison of detector utility by detector recognition of array‐bound biotin. All of the fluorescent detectors examined demonstrated utility on each of the array platforms. For the Fc–biotin array, detector signal intensity (background adjusted) was as follows: RPE–antibody complex > fluospheres > RPE > liposomes > Alexa 546: for the IgG array: RPE/antibody complex > RPE > fluospheres > Alexa546 > liposomes. The RPE–antibody complex fluoresced 67% and 150% more intensely than the next closest detector molecule for the Fc–biotin and the murine IgG arrays, respectively. A marked increase in background fluorescence (as compared to RPE alone) did not accompany the increase in signal intensity gained through RPE–antibody complex use (a true increase in signal:noise ratio). These results suggest that the RPE–antibody complex is superior to other molecules for fluorescent detection of analytes on protein microarrays. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination.  相似文献   

8.
The interaction between antibodies and ligand-functionalized nanoparticles were exploited in this work by taking advantage of the strong influence that metallic surfaces have on emission of fluorescence. The surface of colloidal gold nanoparticles was functionalized with biotin moieties embedded in a nonfouling matrix of di(ethylene glycol) groups to minimize nonspecific interactions. Antibiotin labeled with fluorophore Alexa™ 488 bound to these particles via specific biomolecular recognition interactions. Upon binding of the labeled antibody to the biotinylated nanoparticles, an immediate decrease in emission of fluorescence was observed. Competitive dissociation of the antibody from the nanoparticles with soluble biotin produced a recovery in the intensity of emission of fluorescence. For large concentrations of the antibody, emission of fluorescence (corrected for dilution and absorption/scattering effects) appeared to increase to levels higher than the intensity of emission of the unbound antibody. This apparent increase is ascribed to a decreased extinction coefficient produced during aggregation of the nanoparticles by the bivalent antibodies. This scheme could have applications in detection of small molecules or could be used to study the interactions of ligand functionalized nanoparticles and proteins.  相似文献   

9.
A rapid and sensitive time‐resolved fluoroimmunoassay (TR–FIA) based on the biotin–streptavidin amplification system was developed for the determination of diethylstilbestrol (DES). Europium‐labelled streptavidin derivatives combined with europium and anhydride of diethylene triamine penta‐acetic acid were used to label streptavidin; biotin was coupled with goat anti‐rabbit IgG to form a biotin–goat anti‐rabbit IgG bridge between streptavidin–europium and the anti‐DES antibody in the immunoassay. The DES assay was carried out by measuring the fluorescence of Eu3+–SA at 615 nm. The presented method produced a wide linear range, 0.001–1000.0 ng/mL, and a detection limit up to 0.81 pg/mL for DES. The method was applied to determine DES in serum samples, with recoveries of 97.4–107.8% and RSD 1.32–4.04%. The assay results by the present method showed that biotin–streptavidin amplified TR–FIA for DES detection; it may offer high sensitivity and promising alternative special methods in biological samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, tri‐functional immunofluorescent probes (Ce6–IgG–QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second‐generation photosensitizer, Ce6, was first coupled with anti‐IgG antibody using the EDC/NHS cross‐linking method to construct the photosensitive immunoconjugate Ce6–IgG. Then, a complex of Ce6–IgG–QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6–IgG to water soluble CdTe QDs. The as‐manufactured Ce6–IgG–QDs maintained the bio‐activities of both the antigen–antibody‐based tumour targeting effects of IgG and the photodynamic‐related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti‐human epidermal growth factor receptor (anti‐EGFR antibody, N‐terminus), Ce6–IgG–QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6–IgG–QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody‐based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A novel protocol for development of DNA electrochemical biosensor based on gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE) was proposed, which was carried out by the self-assembly of AuNPs on the mercaptophenyl film (MPF) via simple electrografting of in situ generated mercaptophenyl diazonium cations. The resulting MPF was covalently immobilized on GCE surface via C-C bond with high stability, which was desirable in fabrication of excellent performance biosensors. Probe DNA was self-assembled on AuNPs through the well-known Au-thiol binding. The recognition of fabricated DNA electrochemical biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)(3+) as the electrochemical indicator. Taking advantage of amplification effects of AuNPs and stability of MPF, the developed biosensor could detect target DNA with the detection limit of 7.2×10(-11) M, which also exhibits good selectivity, stability and regeneration ability for DNA detection.  相似文献   

12.
A microarray approach based on surface-enhanced Raman spectroscopic (SERS) was developed for detection of spotted peptide, peptide-protein or protein-antibody interaction. The procedure involves the attachment of peptide-capped gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry. The well-known biomolecular recognition pairs, IgG/protein A and biotin/avidin, were used to demonstrate proof-of-concept of the SERS assay. Detection limits of 10 and 100 fg per microarray spot were obtained respectively for the peptide and protein arrays. For the protein in solution, a limit of 0.1 microg/mL is reported. Furthermore, enzyme activity of the kinase (PKA) is also detected with high specificity for an established peptide substrate (kemptide) on the microarray spots.  相似文献   

13.
Cao C  Sim SJ 《Biosensors & bioelectronics》2007,22(9-10):1874-1880
Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG3-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and FT-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG6-COOH and HS-OEG3-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.  相似文献   

14.
Biotinylation is an established method of labeling antibody molecules for several applications in life science research. Antibody functional groups such as amines, cis hydroxyls in carbohydrates or sulfhydryls may be modified with a variety of biotinylation reagents. Solution-based biotinylation is accomplished by incubating antibody in an appropriate buffered solution with biotinylation reagent. Unreacted biotinylation reagent must be removed via dialysis, diafiltration or desalting. Disadvantages of the solution-based approach include dilution and loss of antibody during post-reaction purification steps, and difficulty in biotinylation and recovery of small amounts of antibody. Solid-phase antibody biotinylation exploits the affinity of mammalian IgG-class antibodies for nickel IMAC (immobilized metal affinity chromatography) supports. In this method, antibody is immobilized on a nickel-chelated chromatography support and derivitized on-column. Excess reagents are easily washed away following reaction, and biotinylated IgG molecule is recovered under mild elution conditions. Successful solid phase labeling of antibodies through both amine and sulfhydryl groups is reported, in both column and mini-spin column formats. Human or goat IgG was bound to a Ni-IDA support. For sulfhydryl labeling, native disulfide bonds were reduced with TCEP, and reduced IgG was biotinylated with maleimide-PEO(2) biotin. For amine labeling, immobilized human IgG was incubated with a solution of NHS-PEO(4) biotin. Biotinylated IgG was eluted from the columns using a buffered 0.2 M imidazole solution and characterized by ELISA, HABA/avidin assay, probing with a streptavidin-alkaline phosphatase conjugate, and binding to a monomeric avidin column. The solid phase protocol for sulfhydryl labeling is significantly shorter than the corresponding solution phase method. Biotinylation in solid phase is convenient, efficient and easily applicable to small amounts of antibody (e.g. 100 microg). Antibody biotinylated on-column was found to be equivalent in stability and antigen-recognition ability to antibody biotinylated in solution. Solid-phase methods utilizing Ni-IDA resin have potential for labeling nucleic acids, histidine-rich proteins and recombinant proteins containing polyhistidine purification tags, and may also be applicable for other affinity systems and labels.  相似文献   

15.
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein-streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 microg/ml.  相似文献   

16.
A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum.  相似文献   

17.
This study reported the synthesis of Vicenin‐2 gold nanoparticles (VN‐AuNPs) and evaluated their effect on the glucose utilization efficiency of 3T3‐L1 adipocytes. The VN‐AuNPs were characterized by microscopic, DLS and spectral analysis. The bio‐reducing efficiency of Vicenin‐2 (VN) was computed and confirmed by HPLC analysis. The stability of VN‐AuNPs in various physiological media was explored. The cytotoxicity and glucose uptake assays were performed in 3T3‐L1 adipocytes. The docking of VN with PTP1B and AMPK was also performed. The color change and UV absorption at 537 nm preliminarily confirmed the VN reduced gold nanoparticles. The VN‐AuNPs appeared as spherical particles (57 nm) and face centered cubic crystals under TEM and XRD analysis, respectively. Its zeta potential was found to be ?6.53 mV. The FT‐IR spectra of VN and its AuNPs confirmed its stability. The computed reducing potential of VN was similar to the extent of VN utilized during the synthesis of VN‐AuNPs. The VN‐AuNPs showed a remarkable stability in different physiological media. At 100 µM concentration, VN‐AuNPs displayed 78.21% cell viability. A concentration dependent increase in glucose uptake was noted in 3T3‐L1 adipocytes when incubated with VN‐AuNPs. The docking data revealed a strong interaction of VN with the binding pockets of PTP1B and AMPK. This demonstrates that the fabricated VN‐AuNPs might enhance the intracellular VN availability mediated cellular glucose utilization and this would serve as a novel nanodrug for the management of diabetes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1096–1106, 2015  相似文献   

18.
The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode‐atomic force microscopy (TM‐AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM‐AFM. By a computational docking approach, a three‐dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM‐AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Protein A from Staphylococcus aureus specifically binds to the Fc region of immunoglobulin G (IgG) and is widely used as a scaffold for the immobilization of IgG antibodies on solid supports. It is known that the oriented immobilization of Protein A on solid supports enhances its antibody-binding capability in comparison with immobilization in a random manner. In the current work, we developed a novel method for the oriented immobilization of the IgG-binding domain of Protein A based on the biotinylation reaction from archaeon Sulfolobus tokodaii. Biotinylation from S. tokodaii has a unique property in that the enzyme, biotin protein ligase (BPL), forms a stable complex with its biotinylated substrate protein, biotin carboxyl carrier protein (BCCP). Here, BCCP was fused to the IgG-binding domain of Protein A, and the resulting fusion protein was immobilized on the BPL-modified gold surface of the sensor chip for quartz crystal microbalance through complexation between BCCP and BPL. The layer of the IgG-binding domain prepared in this way successfully captured the antibody, and the captured antibody retained high antigen-binding capability.  相似文献   

20.
Here, we report a simple and sensitive colorimetric method for detection of melamine in milk using gold nanoparticles (AuNPs). AuNPs of 21-nm size were synthesized by the citrate reduction method. The method is based on the principle that the melamine causes the aggregation of AuNPs and, hence, the wine red color of AuNPs changes to blue or purple. This change in color can be visualized with the naked eye or an ultraviolet–visible (UV–Vis) spectrometer. Under optimized conditions, AuNPs are highly specific for melamine and can detect melamine down to a concentration of 0.05 mg L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号