首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
J T Emerman  D R Pitelka 《In vitro》1977,13(5):316-328
Dissociated normal mammary epithelial cells from prelactating mice were plated on different substrates in various medium-serum-hormone combinations to find conditions that would permit maintenance of morphological differentiation. Cells cultured on floating collagen membranes in medium containing insulin, hydrocortisone and prolactin maintain differentiation through 1 month in culture. The surface cells form a continous epithelial pavement. Some epithelial cells below the surface layer rearrange themselves to form alveolus-like structures. Cells at both sites display surface polarization; microvilli and tight junctions are present at their medium-facing of luminal surface and a basal lamina separates the epithelial components from the gel and stromal cells. Occasional myoepithelial cells, characterized by myofilaments and plasmalemmmal vesicles, are identified at the basal surface of the secretory epithelium. In contrast, cells cultured on plastic, glass or collagen gels attached to Petri dishes form a confluent epithelial sheet showing surface polarization, but lose secretory and myoepithelial specializations. If these dedifferentiated cells are subsequently maintained on floating collagen membranes, they redifferentiate. There is little DNA synthesis in cells on collagen gels, in contrast to Petri-dish controls. Protein synthesis in cells on floating collagen membranes increases over TO values and remains constant through 7 days in culture whereas it decreases on attached gels; however, if the gels are freed to float, protein synthesis increases sharply and parallels that seen on floating membranes.  相似文献   

2.
Summary To define more clearly the in vitro conditions permissive for hormonal induction of functional differentiation, we cultured dissociated normal mammary cells from prelactating mice in or on a variety of substrates. Cultivation of an enriched epithelial cell population in association with living adult mammary stroma in the presence of lactogenic hormones resulted in both morphological and biochemical differentiation. This differentiation, however, was not enhanced over that seen when the cells were associated with killed stroma, provided that the killed stroma had a flexibility similar to that of the living stroma. Cells cultured in inflexible killed stroma usually did not differentiate. Cells cultured within the flexible environment of a collagen gel, but removed from the gas-medium interface, differentiated in a manner similar to those cultured in flexible stroma. Cells cultured on the surface of an attached collagen gel were squamous, and their basolateral surfaces were sequestered from the medium; they did not differentiate. Cells cultured on floating collagen gels were cuboidal-columnar, with basolateral surfaces exposed to the medium, and showed good functional differentiation. Cells cultured on inflexible floating collagen gels were extremely flattened and had exposed basolateral surfaces, and showed no evidence of functional differentiation. We infer that assumption of cuboidal to columnar shapes similar to those of mammary cells in vivo may be important to the induction of functional differentiation in vitro. The additional requirement of basolateral cell surface exposure also is important. This work was supported by U.S. Public Health Service Grants CA-05045 and CA-09041 from the National Cancer Institute, Bethesda, MD.  相似文献   

3.
Summary Mammary epithelial cells from lactating mice synthesize and secrete lactose in culture and retain many features of their in vivo morphology if mammary glands are only partially dissociated to alveoli, rather than completely dissociated to single cells. After 5 d in culture lactose synthesis by alveoli cultured on floating collagen gels is 10 to 20 times higher than in cultures of single cells on floating collagen gels. Moreover, mammary alveoli in culture retain sensitivity to lactogenic hormones; the synthesis of lactose by alveoli depends on the continued presence of insulin and either hydrocortisone or prolactin. In addition, within alveoli the original juxtaposition of constituent epithelial cells is retained, and cells are cuboidal and have many microvilli and fat droplets. In contrast, alveoli on attached gels flatten and lose their secretory morphology. These results indicate that the shape of the cells, presence of lactogenic hormones, and maintenance of epithelial:epithelial cell contacts are required for maintenance of mammary epithelial cell differentiation in culture. This research was supported by Grants CA-16392 and AG-02909 from the National Institutes of Health and Institutional Grant IN 119 from the American Cancer Society.  相似文献   

4.
Elevated levels of xanthine oxidase were found in (1) lactating mouse mammary glands, compared with virgin and midpregnant glands; and (2) primary mouse mammary cells cultured on floating collagen gels, compared with non-secretory cells on attached gels. In primary culture, increase in xanthine oxidase activity above a basal level coincided with secretory activity as measured by casein production; intracellular levels of casein and xanthine oxidase showed a high degree of correspondence. It is suggested that xanthine oxidase levels can be used as an indicator of in vivo and in vitro secretory differentiation in mammary epithelial cells.  相似文献   

5.
We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins.  相似文献   

6.
Several previous studies have demonstrated that mammary epithelial cells from pregnant mice retain their differentiated characteristics and their secretory potential in culture only when maintained on stromal collagen gels floated in the culture medium. The cellular basis for these culture requirements was investigated by the monitoring of milk protein synthesis and polarized secretion from the mouse mammary epithelial cell line, COMMA-1-D. Experiments were directed towards gaining an understanding of the possible roles of cell-extracellular matrix interactions and the requirements for meeting polarity needs of the epithelium. When cells are cultured on floating collagen gels they assemble a basal lamina-like structure composed of laminin, collagen (IV), and heparan sulfate proteoglycan at the interface of the cells with the stromal collagen. To assess the role of these components, an exogenous basement membrane containing these molecules was generated using the mouse endodermal cell line, PFHR-9. This matrix was isolated as a thin sheet attached to the culture dish, and mammary cells were then plated onto it. It was found that cultures on attached PFHR-9 matrices expressed slightly higher levels of beta-casein than did cells on plastic tissue culture dishes, and also accumulated a large number of fat droplets. However, the level of beta-casein was approximately fourfold lower than that in cultures on floating collagen gels. Moreover, the beta-casein made in cells on attached matrices was not secreted but was instead rapidly degraded intracellularly. If, however, the PFHR-9 matrices with attached cells were floated in the culture medium, beta-casein expression became equivalent to that in cells cultured on floating stromal collagen gels, and the casein was also secreted into the medium. The possibility that floatation of the cultures was necessary to allow access to the basolateral surface of cells was tested by culturing cells on nitrocellulose filters in Millicell (Millipore Corp., Bedford, MA) chambers. These chambers permit the monolayers to interact with the medium and its complement of hormones and growth factors through the basal cell surface. Significantly, under these conditions alpha 1-, alpha 2-, and beta-casein synthesis was equivalent to that in cells on floating gels and matrices, and, additionally, the caseins were actively secreted. Similar results were obtained independently of whether or not the filters were coated with matrices.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Bovine mammary epithelial cells cultured on floating gels of rat tail collagen showed two principal cell types, columnar and squamous, with ultrastructural features resembling secretory and myoepithelial cells respectively. Cultures of freshly prepared cells released alpha-lactalbumin into the culture medium and in some cases contained fat droplets, although these did not appear to be released. No ultrastructural evidence of casein synthesis was observed. A notable feature was the failure to secrete a continuous basement membrane. Intermediate filaments were present in abundance in squamous epithelial cells.  相似文献   

8.
We have investigated the influence of culture substrata upon glycosaminoglycans produced in primary cultures of mouse mammary epithelial cells isolated from the glands of late pregnant mice. Three substrata have been used for experiments: tissue culture plastic, collagen (type I) gels attached to culture dishes, and collagen (type I) gels that have been floated in the culture medium after cell attachment. These latter gels contract significantly. Cells cultured on all three substrata produce hyaluronic acid, heparan sulfate, chondroitin sulfates and dermatan sulfate but the relative quantities accumulated and their distribution among cellular and extracellular compartments differ according to the nature of the culture substratum. Notably most of the glycosaminoglycans accumulated by cells on plastic are secreted into the culture medium, while cells on floating gels incorporate almost all their glycosaminoglycans into an extracellular matrix fraction. Cells on attached collagen gels secrete approx. 30% of their glycosaminoglycans and assemble most of the remainder into an extracellular matrix. Hyaluronic acid is produced in significant quantities by cells on plastic and attached gels but in relatively reduced quantity by cells on floating gels. In contrast, iduronyl-rich dermatan sulfate is accumulated by cells on floating gels, where it is primarily associated with the extracellular matrix fraction, but is proportionally reduced in cells on plastic and attached gels. The results are discussed in terms of polarized assembly of a morphologically distinct basal lamina, a process that occurs primarily when cells are on floating gels. In addition, as these cultures secrete certain milk proteins only when cultured on floating gels, we discuss the possibility that cell synthesized glycosaminoglycans and proteoglycans may play a role in the maintenance of a differentiated phenotype.  相似文献   

9.
Summary Cultured mammary cells depend on interaction with a substratum for functional differentiation, even in the presence of lactogenic hormones. Protein synthesis and secretion by mouse mammary epithelial cells on floating collagen gels and (EHS) matrix were compared. Cells were prepared by collagenase digestion of tissue from mid-pregnant mice. Protein synthesis was consistently greater in cells attached to EHS matrix, and was associated with proportionately higher rates of protein secretion into culture medium. Cells on EHS secreted protein into a luminal space formed within multicellular alveoluslike structures. Luminal secreted protein, extracted by EGTA treatment of cells in situ, constituted up to 40% of total secreted radiolabeled protein for cells on EHS matrix. The EGTA extract contained a higher proportion of casein and lactoferrin, whereas transferrin was predominately in the medium. This indicated that cells on EHS matrix had become polarized and were secreting proteins vectorially. In contrast, EGTA treatment of cells on floating collagen gels released virtually no radiolabeled protein, showing that mammosphere formation was a property of cells on EHS. These biochemical observations were supported by ultrastructural evidence. In EHS cultures, the proportion of secreted protein in the luminal fraction, but not the distribution of secreted proteins, changed with time. This suggests that there may be leakage out of the lumen, or intraluminal degradation of protein after secretion. Nevertheless, the results suggest that cellular organization into mammospheres on EHS matrix promotes synthetic and secretory activity. This system provides a useful model for investigation of the regulation of milk secretion.  相似文献   

10.
In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lactation [11]. By measuring the incorporation of glucose carbon from [U-14C]glucose into intermediary metabolites and metabolic products in mammary epithelial cells from virgin, pregnant, and lactating mice, we demonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counterparts. When isolated from lactating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state.  相似文献   

11.
Under standard culture conditions, epithelial cells grow with their basal surface attached to the culture dish and their apical surface facing the medium. Morphological and functional markers are located in the appropriate plasma membrane, and transepithelial transport occurs in a variety of cultured epithelia. As a result of the polarity of the cells and the presence of tight junctions between cells, on standard tissue culture dishes there is restricted access of growth medium to the basolateral surface of the epithelium, which is the surface at which nutrient exchange normally occurs. Greater differentiation of epithelial cultures can be achieved by growing primary cultures or continuous cell lines on permeable surfaces such as porous bottom cultures dishes in which the porous bottom is formed by a filter or membrane of collagen, or on floating collagen gels. In many cultures, differentiation varies with the time after the culture was seeded. Certain chemicals that accelerate differentiation in nonepithelial cells also accelerate the differentiation of epithelial cultures. Ultimately, defined media and specific substrates for cell attachment should lead to further differentiation of epithelia in culture.  相似文献   

12.
Breast epithelial cells differentiate into tubules when cultured in floating three-dimensional (3D) collagen gels, but not when the cells are cultured in the same collagen matrix that is attached to the culture dish. These observations suggest that the biophysical properties of collagenous matrices regulate epithelial differentiation, but the mechanism by which this occurs is unknown. Tubulogenesis required the contraction of floating collagen gels through Rho and ROCK-mediated contractility. ROCK-mediated contractility diminished Rho activity in a floating 3D collagen gel, and corresponded to a loss of FAK phosphorylated at Y397 localized to 3D matrix adhesions. Increasing the density of floating 3D collagen gels also disrupted tubulogenesis, promoted FAK phosphorylation, and sustained high Rho activity. These data demonstrate the novel finding that breast epithelial cells sense the rigidity or density of their environment via ROCK-mediated contractility and a subsequent down-regulation of Rho and FAK function, which is necessary for breast epithelial tubulogenesis to occur.  相似文献   

13.
Mammary epithelial cells were prepared by collagenase digestion of tissue from mid-pregnant rabbits and cultured for up to 6 days on either collagen gels or an extracellular matrix prepared from the same tissue. The behaviour of the cells in serum-supplemented medium containing combinations of insulin, prolactin, hydrocortisone, estradiol and progesterone were monitored by measuring rates of casein synthesis, lactose synthesis, DNA synthesis and protein degradation. After 6 days, epithelial cells on floating collagen gels showed substantial increases in casein synthesis and DNA synthesis over freshly-prepared cells, following a decline during the first 3 days when the collagen gels are contracting. The optimum hormone combination for casein synthesis was insulin + prolactin + hydrocortisone, whereas for optimum DNA synthesis the additional presence of estradiol and progesterone was required. Cells on extracellular matrix showed increased rates of both casein synthesis and DNA synthesis by day 6 in the presence of insulin + prolactin + hydrocortisone, with additional estradiol + progesterone having an inhibitory effect. Whereas on day 2 rates of intracellular protein degradation were generally lower in cells on extracellular matrix, by day 6 rates of protein degradation were lowest in cells cultured on collagen gels with insulin + prolactin + hydrocortisone. In all cases, rates of lactose synthesis fell to low levels as the culture proceeded. Pulse-chase labelling of freshly-prepared cells with [32P]orthophosphate in medium containing serum and insulin + prolactin + hydrocortisone demonstrated that newly-synthesized casein was degraded during its passage through the epithelial cell. The influences of the collagen gels and extracellular matrix and of the hormone combinations on epithelial cell differentiation and secretory activity are discussed.  相似文献   

14.
The influence of collagen gels on the orientation of the polarity of epithelial thyroid cells in culture was studied under four different conditions. (a) Isolated cells cultured on the surface of a collagen gel formed a monolayer. The apical pole was in contact with the culture medium and the basal membrane was attached to the substratum. (b) Isolated cells embedded inside the gel organized within 8 into follicles. The basal pole was in contact with collagen and the apical pole was oriented towards the interior of the follicular lumen. (c) Cells were first organized into floating vesicles, structures in which the apical surface is in contact with the culture medium, and the vesicles were embedded inside the collagen gel. After 3 d, cell polarity was inverted, the apical pole being oriented towards the cavity encompassed by cells. Vesicles had been transformed into follicles. (d) Monolayers formed on collagen gels as in a were overlaid with a second layer of collagen, which was polymerized in contact with the apical cell surface. A disorganization of the continuous pavement occurred within 24 h; cells attached to the upper layer of collagen and reorganized into follicles in the collagen sandwich within 4-8 d. A similar process occurred when the monolayer was grown on plastic and overlaid with collagen, or grown on collagen and covered with small pieces of glass cover slips. No reorganization was observed between two glass surfaces. In conclusion, first, a basal pole was always formed in the area of contact between the cell membrane and an adhesive surface and, second, the interaction of a preformed apical pole with an adhesive surface was not compatible with the stability of this domain of the plasma membrane. The interaction of the cell membrane with extracellular components having adhesive properties appears to be a determinant factor in the orientation and stabilization of epithelial cell polarity.  相似文献   

15.
It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce gamma-casein, a member of the casein gene family, only if they are maintained on floating collagen gels (Emerman, J.T., and D.R. Pitelka, 1977, In Vitro, 13:316-328). In this paper we show: (a) Cells on floating collagen gels secrete not only gamma-casein but also alpha 1-, alpha 2-, and beta-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross- linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. alpha-Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.  相似文献   

16.
Mammary epithelial cells dissociated from lactating mouse mammary glands form confluent monolayer cultures on collagen gel substrates. For these cultures, the substrate is more significant than the presence of lactogenic hormones in the maintenance of cell differentiation, as indicated by both morphological and biochemical criteria. Only cells cultured on floating collagen gels are able to maintain their lactose pool over several days in culture, although their ability to synthesize and secrete lactose becomes impaired. These cells are cuboidal in shape. In contrast, cells cultured on attached gels, which are constrained from changing shape and whose basolateral surfaces are inaccessible, lose their differentiation with time in culture. These flattened, dedifferentiated cells respond to the same hormonal environment by showing a mild proliferative response. Therefore, the response of cells to their hormonal milieu may be correlated with their shape: the squamous cells dedifferentiate and proliferate; the cuboidal cells maintain their differentiation and do not proliferate.  相似文献   

17.
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alphas1-casein, lactoferrin (Lf), and alpha-lactalhumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf scrum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 μg/ml medium, which was 2–3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for eryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin. and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.  相似文献   

18.
Epithelial cells dissociated from mammary glands of midpregnant mice and cultured with lactogenic hormones on plastic or collagen gel substrates have been shown to vary in their extent of differentiation, as identified by the presence of secretory organelles and accumulation and secretion of casein. Morphological and biochemical differentiation was obtained on floating collagen gels. At least four unique factors provided by the floating collagen gel substrates are not found on plastic substrates: access of nutrients to basolateral cell surfaces, close proximity of cells to the medium surface and gas phase, interaction of epithelial cells with stromal elements, and substrate flexibility permitting cell shape change. In this study, we have attempted to assess the relative contributions of these factors in the ultrastructural differentiation of mammary cells in culture. None of these factors alone is responsible for the differentiation achieved when all are present. The novel aspect of this research is the identification of the cells' apparent requirements for basolateral access to nutrients and for freedom to assume a preferred shape in order to achieve differentiation.  相似文献   

19.
A class of proteins from mouse mammary epithelial cells has been isolated which, like the calcium-binding protein calmodulin (CaM), binds to phenothiazine in a calcium-dependent manner. These proteins do not bind to phenothiazine through binding to CaM; we infer that they are calcium-binding proteins, and that they may be related to the similarly isolated 'calcimedins' of Moore, P D & Dedman, J, J biol chem 257 (1982) 9663 [8]. In primary cultures of mouse mammary cells on collagen gels, synthesis of certain of these proteins is associated with the spreading of cells to form monolayers; failure of cells to spread and differentiate, through omission of serum from culture medium, results in the inhibition of calcium-binding protein synthesis, with the exception of CaM and a 15 kD species. The CaM/15 kD pair are prominent during all phases of culture, and are secreted during the secretory differentiation phase of culture (floating gels). We propose that these calcium-binding proteins play a specific role in the motility of mammary epithelial cells and that they may also be involved in mammary secretory differentiation.  相似文献   

20.
To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号