首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Preparing plasmid templates for DNA sequencing is the most time-consuming step in the sequencing process. Current template preparation methods rely on a labor-intensive, multistep procedure that takes up to 24 h and produces templates of varying quality and quantity. The TempliPhi™ DNA Sequencing Template Amplification Kit eliminates the requirement for extended bacterial growth prior to sequencing and saves laboratory personnel hands-on time by eliminating the centrifugation and transfer steps currently required by older preparatory methods. In addition, costly purification filters and columns are not necessary, as amplified product can be added directly to a sequencing reaction. Starting material can be any circular template from a colony, culture, glycerol stock, or plaque. Based on rolling circle amplification and employing bacteriophage Phi29 DNA polymerase, the method can produce 3–5 μg of template directly from a single bacterial colony in as little as 4 h. Implementation of these procedures in a laboratory or core sequencing facility can decrease cost on tips, plates, and other plasticware, while at the same time increase throughput.  相似文献   

2.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

3.
Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.  相似文献   

4.
The GenomiPhi DNA Amplification Kit employs rolling circle amplification (RCA) using phi29 polymerase, dNTPs, and random hexamers. We demonstrated that repeated RCA (at least three times) is useful for high-fidelity amplification of large amounts of plasmid DNA.  相似文献   

5.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

6.
J Voisey  G J Hafner  C P Morris  A van Daal  P M Giffard 《BioTechniques》2001,31(5):1122-4, 1126, 1128-9
Linear dsDNA composed of tandem repeats may be exponentially amplified by the strongly strand-displacing Bst DNA polymerase (large fragment) and two primers specific for opposite strands. When the repetitive DNA is derivedfrom rolling circle replication of a circular template, the reaction is termed cascade rolling circle amplification (CRCA). We have developed a variant of CRCA in which one primer is attached to the surface of a microwell and the other is labeled, thus enabling detection of amplified material using an ELISA-like protocol. The circular template is derived by annealing and ligation of a padlock on target DNA. It was found that there was good correlation between the synthesis of amplified material and signal. The specificity of the reaction with respect to single-nucleotide polymorphisms was investigated, and it was found that Bst DNA polymerase is prone to extension from primers with mismatched 3' ends. Reliable single nucleotide specificity was only obtained when pre-synthesized amplified material was interrogated by competitive primer extension.  相似文献   

7.
A simple isothermal nucleic-acid amplification reaction, primer generation–rolling circle amplification (PG–RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60°C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid amplification reactions such as polymerase chain reaction (PCR), this reaction does not require exogenous primers, which often cause primer dimerization or non-specific amplification. Instead, ‘primers’ are generated and accumulated during the reaction. The circular probe carries only two sequences: (i) a hybridization sequence to the sample DNA and (ii) a recognition sequence of the nicking enzyme. In PG–RCA, the circular probe first hybridizes with the sample DNA, and then a cascade reaction of linear rolling circle amplification and nicking reactions takes place. In contrast with conventional linear rolling circle amplification, the signal amplification is in an exponential mode since many copies of ‘primers’ are successively produced by multiple nicking reactions. Under the optimized condition, we obtained a remarkable sensitivity of 84.5 ymol (50.7 molecules) of synthetic sample DNA and 0.163 pg (~60 molecules) of genomic DNA from Listeria monocytogenes, indicating strong applicability of PG–RCA to various molecular diagnostic assays.  相似文献   

8.
Bst DNA聚合酶具有热稳定性、链置换活性及聚合酶活性,在体外DNA等温扩增反应中起重要作用. 本文利用Bst DNA聚合酶的5′→3′聚合酶、核苷酸(末端)转移酶及链置换酶活性发展了一种新的体外环式DNA扩增技术跨越式滚环等温扩增(saltatory rolling circle amplification,SRCA).在SRCA反应中,Bst DNA聚合酶以上游引物P1为模板合成其互补链RcP1,并和P1形成双链DNA|之后,Bst DNA聚合酶用其核苷酸转移酶活性在其P1的3′末端沿5′→3′方向随机掺入脱氧核糖核苷酸聚合形成寡聚核苷酸(dNMP)m序列,即DNA的合成反应跨越了RcP1 与下游引物P2之间的缺口|然后,以下游引物P2为模板形成互补序列(RcP2);接着,Bst DNA聚合酶继续将脱氧核糖核苷酸随机添加到RcP2的3′末端,形成(dNMP)n序列.继而,Bst DNA聚合酶以RcP1为模板,继续催化聚合反应合成互补新链,并通过其链置换酶活性替换P1|如此往复,形成[P1-(dNMP)m-RcP2-(dNMP)n …]序列.本文通过电泳、酶切、测序等方法对扩增产物进行分析,演绎出上述扩增过程,并就工作原理进行了讨论.该反应可能对开发等温扩增技术检测微生物有一定助益,也为解释环介导等温扩增技术中假阳性反应和滚环等温扩增反应中的背景信号提供了线索.  相似文献   

9.
We compared the accuracy of genotyping for DNA extracted from lymphocytes to that of DNA amplified from buccal epithelial cells. Amplification was via a rolling circle/phi29 DNA polymerase commercial kit. Paired buccal and lymphocyte DNA samples were available from 30 individuals. All samples were genotyped for 12 SNPs, 5 microsatellites and 2 VNTRs. The accuracy of genotyping (no-call proportions, reproducibility, and concordance) was similar for DNA from lymphocytes in comparison to amplified DNA from buccal samples. If used with caution, these data suggest that rolling-circle whole-genome amplification can be used to increase the DNA mass available for large-scale genotyping projects based on DNA from buccal cells.  相似文献   

10.
Sequencing PCR DNA amplified directly from a bacterial colony   总被引:7,自引:0,他引:7  
We show that PCR product asymmetrically amplified directly from a bacterial colony can be sequenced to yield results as good as those obtained when purified template DNA is used for the PCR amplification step. With either template, greater than 300 nucleotides can be read from a typical sequencing reaction. Taq DNA polymerase was used for both the PCR amplification and sequencing reactions.  相似文献   

11.
Rolling circle amplification (RCA) of plasmid or genomic DNA using random hexamers and bacteriophage phi29 DNA polymerase has become increasingly popular in the amplification of template DNA in DNA sequencing. We have found that the mutant protein of single-stranded DNA binding protein (SSB) from Thermus thermophilus (Tth) HB8 enhances the efficiency of amplification of DNA templates. In addition, the TthSSB mutant protein increased the specificity of phi29 DNA polymerase. We have overexpressed the native and mutant forms of TthSSB protein in Escherichia coli and purified them to homogeneity. In vitro, these proteins were found to bind specifically to single-stranded DNA. Addition of TthSSB mutant protein to RCA halved the elongation time required for phi29 DNA polymerase to synthesize DNA fragments in RCA. Furthermore, the presence of the TthSSB mutant protein essentially eliminates nonspecific DNA products in RCA reactions.  相似文献   

12.
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA–GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using ϕ29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3′- and 5′- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.  相似文献   

13.
In rolling circle replication, a circular template of DNA is replicated as a long single-stranded DNA concatamer that spools off when a strand displacing polymerase traverses the circular template. The current view is that this type of replication can only produce single-stranded DNA, because the only 3′-ends available are the ones being replicated along the circular templates. In contrast to this view, we find that rolling circle replication in vitro generates large amounts of double stranded DNA and that the production of single-stranded DNA terminates after some time. These properties can be suppressed by adding single-stranded DNA-binding proteins to the reaction. We conclude that a model in which the polymerase switches templates to the already produced single-stranded DNA, with an exponential distribution of template switching, can explain the observed data. From this, we also provide an estimate value of the switching rate constant.  相似文献   

14.
A simple and reliable procedure for the amplification of single-stranded DNA suitable for sequencing is described. This procedure employs the polymerase chain reaction and implements modifications pertaining to the purification of the double-stranded DNA product prior to single-stranded DNA amplification. The most consistent sequencing reactions are obtained when the double-stranded DNA product is purified by centrifugation with a microconcentrator prior to single-stranded DNA amplification and the overall amount of specific primers and number of cycles used, in both single-stranded and double-stranded DNA polymerase chain reactions, are reduced.  相似文献   

15.
Ding X  Snyder AK  Shaw R  Farmerie WG  Song WY 《BioTechniques》2003,35(4):774-6, 778-9
We have efficiently amplified plasmid DNA from single yeast colonies using rolling circle amplification (RCA). The amplified DNA can be directly used for restriction digestion, DNA sequencing, or yeast transformation. The RCA-based high-fidelity amplification would be useful for plasmid manipulation in a variety of yeast-based systems, particularly for high-throughput analyses.  相似文献   

16.
The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with phi29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 x 10(4)-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information.  相似文献   

17.
Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material.  相似文献   

18.
Geminiviruses with small circular single-stranded DNA genomes replicate in plant cell nuclei by using various double-stranded DNA (dsDNA) intermediates: distinct open circular and covalently closed circular as well as heterogeneous linear DNA. Their DNA may be methylated partially at cytosine residues, as detected previously by bisulfite sequencing and subsequent PCR. In order to determine the methylation patterns of the circular molecules, the DNAs of tomato yellow leaf curl Sardinia virus (TYLCSV) and Abutilon mosaic virus were investigated utilizing bisulfite treatment followed by rolling circle amplification. Shotgun sequencing of the products yielded a randomly distributed 50% rate of C maintenance after the bisulfite reaction for both viruses. However, controls with unmethylated single-stranded bacteriophage DNA resulted in the same level of C maintenance. Only one short DNA stretch within the C2/C3 promoter of TYLCSV showed hyperprotection of C, with the protection rate exceeding the threshold of the mean value plus 1 standard deviation. Similarly, the use of methylation-sensitive restriction enzymes suggested that geminiviruses escape silencing by methylation very efficiently, by either a rolling circle or recombination-dependent replication mode. In contrast, attempts to detect methylated bases positively by using methylcytosine-specific antibodies detected methylated DNA only in heterogeneous linear dsDNA, and methylation-dependent restriction enzymes revealed that the viral heterogeneous linear dsDNA was methylated preferentially.  相似文献   

19.
The cloning and complete sequencing of gene 2 from four independently isolated temperature-sensitive mutants in the phage phi 29 DNA polymerase (ts2 mutants) is reported. The results obtained indicate that, in vivo, the mutations only affect the initial steps of the replication process. Interestingly, three of these mutations consist in the single amino acid change Ala to Val at position 492 of the protein. The ts2(24) and ts2(98) mutant phi 29 DNA polymerases were expressed, purified and their thermosensitivity was studied at two different steps of DNA replication: 1) protein-primed initiation and 2) elongation of the DNA chain. Whereas the ts2(24) mutation gave rise to a temperature-sensitive phenotype in both reactions, the ts2(98) mutant protein was rather insensitive to the temperature increase. In addition, the ts2(98) mutant protein showed clear differences in the activation by divalent cations. The relationship of these results with structural and functional domains in the phi 29 DNA polymerase are discussed.  相似文献   

20.
Whole genome amplification protocols are revolutionizing the fields of molecular and conservation biology as they open the possibility of obtaining a large number of copies of a complete genome from minute amounts of sample. Multiple displacement amplification (MDA) is a whole genome amplification technique based on the properties of the phi29 DNA polymerase, which leads to a uniform representation of the genome with very low error rates. In this study we performed MDA on 28 macaque DNA samples extracted from blood or non-invasively collected semen from which we obtained mitochondrial control region sequences both before and after MDA. The length of the readable sequences was longer for the original samples than for the MDA products, but the number of unresolved positions was comparable both before and after MDA. We conclude that the MDA technique is useful for increasing the amount of DNA for sequencing mitochondrial regions in the case of non-invasively collected semen samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号