首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
珙桐叶肉细胞中的核内含体   总被引:4,自引:0,他引:4  
对植物细胞核内含体的超微结构已有过广泛的研究[1]。Bigazzi仅对玄参科就研究了290种植物,发现其中242种具有核内含体[2]。根据超微结构特征,可以把这类无膜的已证明主要是蛋白质成分的核内含体分为5种类型。即片状型(L-type)、纤丝状型(F-type)、管状型(T-type)、晶体型(C-type)及无定形型(A-type)[3]。此前除F-type外陆续发现了与基本类型略有差异的4种亚型,即C2亚型、T2亚型、A2亚型和L2亚型[2,3]。尽管目前还不清楚核内含体的功能,但是研究发现,它在成熟细胞中的结构是稳定的。许多学者认为核内含体作为超微结构特征,在系统学和分…  相似文献   

2.
蓝猪耳精细胞的分离及两个精细胞群体的收集   总被引:4,自引:1,他引:3  
蓝猪耳是二细胞型花粉,生殖细胞在花粉管中分裂形成两个精细胞。用体内-体外技术培养出花粉管后,将其置于爆破液中即可释放出花粉管内含物,其中包括两个精细胞和营养细胞。在显微镜下两个精细胞具二型性:体积较大的精细胞与花粉管的营养核相连,体积较小的精细胞只与大精细胞连接。两个精细胞之间的连接比较结实,需用微量酶液将两个精细胞分开。用显微操作仪就可分别挑选出两个精细胞群体,分别有上百个细胞。蓝猪耳精细胞的成功分离为利用蓝猪耳开展离体受精研究打下了良好的基础。这种单一纯化的精细胞群体的获得为用分子生物学方法区分两个精细胞的特异基因和蛋白质创造了条件。  相似文献   

3.
在电镜下观察油松 (PinustabulaeformisCarr.)传粉后的胚珠临近受精时的花粉管和卵细胞的细胞质、受精时雄配子体细胞质的传递、游离核和细胞原胚发育时期质体和线粒体的传递。在成熟卵细胞中含许多线粒体 ,缺少正常结构的质体 ,它们转变为大内含体。此外 ,卵细胞还有丰富的小内含体和其他一些细胞器。花粉管在卵细胞的珠孔端释放其内含物。精核与卵核融合时 ,核周围未见来自精细胞的质体和线粒体。不参与融合的精核停留在接受液泡旁 ,在其周围有大量的雄性细胞质 ,其中混合有精细胞、管细胞和卵细胞的细胞器。在游离核原胚时期 ,核周区的细胞质中可见雄性与雌性亲本的细胞器相混合 ;其中许多线粒体与原来卵细胞中的线粒体有相同的形态 ,也有一些线粒体看来是来自精细胞和管细胞 ;质体是由雄配子体传递 ,形态与精细胞的或花粉管中的质体相似。卵细胞中变异的质体 (即大内含体 )在原胚发育时期变为液泡状 ,而雄性质体参加到新细胞质中。在原胚细胞中 ,线粒体大多数为母本来源 ,质体则表现为精细胞或管细胞的质体形态。该研究确定了油松具父系质体和双亲线粒体遗传的细胞学基础。对裸子植物线粒体和质体遗传的机理从细胞学的角度进行了分析。  相似文献   

4.
本文应用透射电对朱顶红成熟花粉水合、活化和萌发的动态过程中营养细胞质的结构和组成变化进行了观察,成熟花粉具质体、线粒体、高尔基体。微丝束以聚集体的形式存在。花粉活化后,细胞器的数目和结构发生显著变化;质体和线粒体的片层明显增加,内质网片层狭窄,高尔基体活跃产生小泡,脂体降解及微丝聚集体散开。花粉萌发后,细胞质中出现周质微管和被刺小泡,此期细胞器的变化不明显。微丝以纤丝状遍布整个花粉管中。  相似文献   

5.
本文应用透射电镜对朱顶红成熟花粉水合、活化和萌发的动态过程中营养细胞质的结构和组成变化进行了观察。成熟花粉具质体、线粒体、内质网、高尔基体。微丝束以聚集体的形式存在。花粉活化后,细胞器的数目和结构发生显著变化:质体和线粒体的片层明显增加,内质网片层狭窄,高尔基体活跃产生小泡,脂体降解及微丝聚集体散开。花粉萌发后,细胞质中出现周质微管和被刺小泡,此期细胞器的变化不明显。微丝以纤丝状遍布整个花粉管中。  相似文献   

6.
土麦冬离体萌发花粉管中生殖细胞与营养核的动态变化   总被引:7,自引:0,他引:7  
主要报道了土麦冬人工培养萌发花粉管中生殖细胞与营养核的动态变化。多数花粉管中,生殖细胞与营养核贴合后,开始进行有丝分裂,贴合时,营养核略呈弥散状态。在分裂早中期,生殖细胞与营养核分开,从贴合到分开大约经历3-5h,精子形成后,不与营养核连接。DAPI对生殖细胞的有丝分裂有抑制作用。少数花粉管中,生殖细胞核进行无丝分裂,有缢裂和劈裂两种方式。生殖细胞核发生缢裂的花粉管中,未观察到生殖细胞与营养核的贴  相似文献   

7.
在电镜下观察汕松(inus tabulaeformis Carr.)传粉后的胚珠临近受地的花粉管和卵细胞的细胞质,受精时雄配子体细胞质的传递、游离核和细胞原胚发育时期质体和线粒体的传递。在成熟卵中含许多线粒体,缺少正常结构的质全,它们转变为大内含体。此外卵细胞还有丰富的小内含体和其他一些细胞器。花粉管在卵细胞的珠孔端释放其内含物。精核与卵核融合时,核周围未见来自精细胞的质体和线粒体。不参与融合的精  相似文献   

8.
荧光标记法检测不同毒物对细胞骨架的影响   总被引:2,自引:0,他引:2  
细胞骨架(Cytoskeleton)主要由微管(Microtubule,MT)、微丝(Microfilament,MF)以及中间丝(Intermediate filament,IF)这三种类型组成。它们在细胞的形态维持、物质运输、信号转导、能量转换及细胞的运动和分裂等多个过程中发挥着重要的作用。其中,由肌动蛋白组成的微丝是真核细胞中含量最丰富的一种蛋白复合体,以解聚时的球状肌动蛋白G-actin(Globular actin)或聚合时的纤丝状肌动蛋白F-actin(Filamen-tous actin)形式存在。正常细胞中肌动蛋白两种形态的转换处于动态平衡,共同行使细胞的变形运动、胞质分裂、基质附着和胞间连接等多…  相似文献   

9.
杜鹃成熟花粉为二胞型,含一个营养细胞和一个生殖细胞,其精细胞在花粉管中形成。应用半离体技术培养杜鹃已授粉花柱,使花粉管从花柱中长出,再用渗透压冲击法促使花粉管破裂,释放出一对与营养核相连的精细胞。分离的精细胞经FDA方法检测,证明具活性。用显微操作仪可收集数量较多的分离精细胞。  相似文献   

10.
为探索纤毛虫在营养及休眠条件下两套遗传系统的作用关系,对膜状急纤虫(Tachysomapellionella)营养细胞和休眠包囊大核DNA、线粒体DNA进行了RAPD比较。结果显示,在所选用的34条随机引物中,大核DNA共扩增出203条片段,其中以休眠包囊大核DNA为模板扩增出45条特有片段,以营养细胞大核DNA为模板扩增出36条特有片段,两者存在40%的差异。在所选用的32条随机引物中,线粒体DNA共扩增出216条片段,其中以休眠包囊线粒体DNA为模板扩增出35条特有片段,以营养细胞线粒体DNA为模板扩增出47条特有片段,两者有38%的差异。结果表明,膜状急纤虫休眠包囊与营养期的大核DNA结构存在显著的差异;两者的线粒体DNA结构也存在较大差异。这表明,膜状急纤虫在包囊形成过程中,大核及线粒体DNA结构可能都发生了一定的变化,并且这些变化可能与包囊形成过程中的形态结构和代谢活动等剧烈变化以及休眠状态下的生理生化变化密切相关。  相似文献   

11.
It has been reported that in species of Plumbaginaceae, Chenopodiaceae,Cruciferae and Amaryllidaceae a ‘male germ unit’is formed in which the two male gametes remain inter-connected,with one of the pair linked intimately to the vegetative nucleus.In two species the unit has been shown to remain intact in thepollen tube, and some accounts imply that it is polarized inits movement, the vegetative nucleus leading in the tube. Evidence given in this paper indicates that such a unit is unlikelyto be present in Helleborus foetidus L. (Ranunculaceae). Applicationof an optical sectioning technique has shown that at no timeis there a persistent linkage between the generative cell andthe vegetative nucleus in unhydrated, hydrated and germinatingpollen, nor is one present in the early pollen tube. Furthermore,no inter-connections between the two entities were seen in protoplastsfrom living, hydrated and incipiently germinating grains isolatedmechanically in an osmotically balancing medium. Following germination,the vegetative nucleus leaves the grain in advance of the generativecell in most instances, but in the samples examined the generativecell led in about 30 per cent of the tubes. Assembling a polarisedmale germ unit in these circumstances would require (a) theformation of an inter-connection between the vegetative nucleusand the generative cell or one of the gametes derived from itduring passage through the tube, and (b) where the generativecell initially leads in the tube, an exchange in relative positions.It is considered improbable that these conditions could consistentlybe met. Mature, incipiently germinating pollen of H. foetidus releasesa fibrillar component when extruded into suitable media. Websor clusters of fibrils are commonly seen to be associated withboth the vegetative nucleus and the generative cell. The possibilitythat the fibrils are composed of aggregates of microfilamentsis considered. Helleborus foetidus L., pollen germination, generative cell, vegetative nucleus, male germ unit  相似文献   

12.
Generative and sperm cells were examined at four stages of development from generative cell formation to sperm cell maturation using serial transmission electron microscopy. The generative cell and vegetative nucleus are associated in a male germ unit association during pollen maturation and tube elongation, except for generative cell mitosis. At late stages of prophase, this association loosens; the generative cell separates from the vegetative nucleus at metaphase. Slender, unbranched, or occasionally branched projections may be found at one or both ends of the generative cell, or they may be single, blunt, and short. Slender projections are rare during anaphase and telophase. The vegetative nucleus moves back into apposition with one sperm cell at the end of mitosis. During the re-establishment of the association, the vegetative nucleus first touches the end of the leading sperm cell and then moves next to the middle of the sperm nucleus. As the sperm cells enter interphase, a conventional association is re-established between one cell and the vegetative nucleus through one or more long and slender cytoplasmic extensions; these associations are maintained throughout later passage in the pollen tube. During maturation, a significant increase occurs in the surface area of the sperm cells (particularly in the sperm cell in association with the vegetative nucleus), and a lesser increase in nuclear volume and surface area. Other sperm cell parameters, including those of heritable organelles, remain unchanged during sperm cell maturation.  相似文献   

13.
The complex cellular events that occur during development of the male gametophyte of higher plants suggest a role for the cytoskeleton. This investigation has revealed that unique microtubule arrays mediate events that occur during microspore development; both actin and microtubule arrays have important roles during the asymmetrical microspore mitosis and unique actin arrays mediate events that occur during early pollen development. Migration of the nucleus to the generative pole during cellular polarization of the microspore is mediated by a microtubule cage that encloses the nucleus. Nuclear position at the generative pole is maintained by an actin net that tethers it to the pole prior to the asymmetrical mitosis. During entry into mitosis, the microtubule cage becomes modified and transforms into the asymmetrical mitotic spindle. Actin is localized within the region of the mitotic spindle and in the phragmoplast. Following mitosis, actin networks enclose first the generative cell and then the vegetative nucleus. These actin networks function during migration of the generative cell and vegetative nucleus toward the centre of the pollen grain. Mature pollen contains a dense cortical actin meshwork and a disc-shaped microtubule array enclosing the generative cell. The functional importance of the unique actin and microtubule arrays is verified by their targeted disruption with specific cytoskeletal inhibitors, which disrupt normal development and cellular morphology. In summary, these data provide evidence that the co-ordinated reorganization of unique actin and microtubule arrays is an essential determinant of microspore and pollen development.  相似文献   

14.
In angiosperm pollen, the vegetative cell is assumed to function as a gametophytic cell in pollen germination and growth of the pollen tube. The chromatin in the nucleus of the vegetative cell gradually disperses after microspore mitosis, whereas the chromatin in the nucleus of the other generative cell remains highly condensed during the formation of two sperm nuclei. In order to explain the difference in chromatin condensation between the vegetative and generative nuclei, we analyzed the histone composition of each nucleus in Lilium longiflorum Thunb. and Tulipa gesneriana immunocytochemically, using specific antisera raised against histones H1 and H2B of Lilium. We found that the level of histone H1 decreased gradually only in the vegetative nucleus during the development of pollen within anthers and that the vegetative nucleus in mature pollen after anther dehiscence contained little histone H1. By contrast, the vegetative nucleus contained the same amount or more of histone H2B than the generative nucleus. The preferential decrease in the level of histone H1 occurred in anomalous pollen with one nucleus (uninucleate pollen) or with two similar nuclei (equally divided pollen), which had been induced by treatment with colchicine. The nuclei in the anomalous pollen resembled vegetative nuclei in terms of structure and staining properties. The anomalous pollen was able to germinate and extend a pollen tube. From these results, it is suggested that the preferential decrease in level of histone H1 in pollen nuclei is essential for development of the male gametophytic cell through large-scale expression of genes that include pollen-specific genes, which results in pollen germination and growth of the pollen tube. Received: 9 May 1998 / Accepted: 4 June 1998  相似文献   

15.
Large quantities of protoplasts were isolated enzymatically from the mature pollen grains in Gladiolus gandavensis. Regeneration of cell wall and germination of pollen tubes were performed during culture of purified pollen protoplasts in Ks medium supplemented with 32% sucrose, 0.1 mg/1 2,4-D, 1 mg/1 NAA and 0.2 mg/1 6-BA, with a germination rate up to 47.7%. The materials were fixed gently with gradually increasing concentration of glutaraldehyde, followed by osmium, then preembedded in a thin layer of agar and surveyed under an inverted microscope so as to select desired specimens for subsequent procedure. Small agar blocks containing specimens were dehydrated through ethanal-propylene oxide series, embedded in Araldite and ultratomed. Electron microscopic observations show that the pollen protoplasts are surrounded by a smooth plasma membrane and with ultrastructurally intact cytoplasm, a vegetative nucleus and a generative cell. After 8h of culture, wall regeneration commences resulting in a multilayered, fibrillar wall structure which is different from the intine. No exine is formed. Numerous vesicles participate actively in the wall formation. The wall is uneven in thickness around its periphery; a thickened area somewhat resembling to germ furrow is formed, from which pollen tube emerges. The tubes contain abundant plastids, mitochondria and dictyosomes. Vesicles are released out of the plasma membrane and involved in tube wall formation. After 18h of culture, the vegetative nucleus and generative cell have migrated into the tube. Technical points of preparing pollen protoplast specimens for ultastructural studies and the fearnres of wall regeneration in pollen protoplast culture are discussed.  相似文献   

16.
The uniaperturate pollen of wheat is dispersed in a partially hydrated condition. Amyloplasts are concentrated in the apertural hemisphere where they surround the two sperms, while vigorously moving polysaccharide-containing wall precursor bodies (P-particles) together with the vegetative nucleus occupy the other. This disposition is the product of a post-meiotic developmental sequence apparently peculiar to the grasses. During vacuolation of the spore after release from the tetrad, the nucleus is displaced to the pole of the cell opposite the site of the germination aperture, already defined in the tetrad. Following pollen mitosis, the vegetative nucleus migrates along the wall of the vegetative cell towards the aperture, leaving the generative cell at the opposite pole isolated by a callose wall. As the vacuole is resorbed, the generative cell rounds up, loses its wall and follows the vegetative nucleus, passing along the wall of the vegetative cell towards the aperture where it eventually divides to produce the two sperms. Throughout this period of nucleus and cell manoeuvrings, minor inclusions of the vegetative cell cytoplasm, including mitochondria, lipid globuli and developing amyloplasts, move randomly. Coordinated vectorial movement begins after the main period of starch accumulation, when the amyloplasts migrate individually into the apertural hemisphere of the grain, a final redistribution betokening the attainment of germinability. In the present paper we correlate aspects of the evolution of the actin cytoskeleton with these events in the developing grain, and relate the observations to published evidence from another monocotyledonous species concerning the timing of the expression of actin genes during male gametophyte development, as revealed in the synthesis of actin mRNA.  相似文献   

17.
Summary The pattern of RNA synthesis during maturation and germination of pollen grains ofHyoscyamus niger was studied using3H-uridine autoradiography. Incorporation of label during pollen maturation was periodic with peak RNA synthesis occurring in the uninucleate, nonvacuolate pollen grains and in the vegetative cell of the bicellular pollen grains. During the early stages of germination, isotope incorporation occurred predominantly in the nucleus of the vegetative cell with little or no incorporation in the generative cell. With the appearance of the pollen tube, incorporation of3H-uridine in the vegetative cell nucleus decreased and completely disappeared at later stages of germination. No incorporation of isotope was observed in the sperms formed in the pollen tube by the division of the generative cell. From a comparison of the results of this study with those of previous works on RNA synthesis during pollen embryogenesis in cultured anthers ofH. niger, it is concluded that in contrast to embryogenic development, there is no requirement for sustained RNA synthesis by the generative cell nucleus for normal gametophytic development.  相似文献   

18.
利用绿色荧光蛋白基因结合鼠Talin基因表达技术及水稻转基因技术,在未成熟花粉发育期(即生殖细胞在形成后从靠壁部位移向中央部位的阶段)的水稻(Oryza sativa L.)内发现了一系列前人未曾报道过的微丝骨架的形成和多变过程.在这一发育阶段,未成熟花粉内的生殖细胞呈圆形,中央部位存有一个大液泡,大量微丝在细胞的中央胞质内形成.微丝首先在营养核的核膜表面形成两个集结中心,中心内的微丝呈短粗状.尔后,中心微丝不断延长,最终在细胞中央的胞质内形成一个非常复杂的类似多个纺锤体结合在一起的网络结构.这一网络的中间部位经常包围着营养核和生殖细胞,网络的部分微丝则与存在周缘细胞质(或称周质)的微丝网络形成连接,在连接点部位则形成一些由微丝环状组成的结构.未成熟花粉中央的微丝网络可能与营养核和生殖细胞在未成熟花粉内的运动有密切关系.  相似文献   

19.
利用绿色荧光蛋白基因结合鼠Talin基因表达技术及水稻转基因技术,在未成熟花粉发育期(即生殖细胞在形成后从靠壁部位移向中央部位的阶段)的水稻(Oryza sativa L.)内发现了一系列前人未曾报道过的微丝骨架的形成和多变过程。在这一发育阶段,未成熟花粉内的生殖细胞呈圆形,中央部位存有一个大液泡,大量微丝在细胞的中央胞质内形成。微丝首先在营养核的核膜表面形成两个集结中心,中心内的微丝呈短粗状。尔后,中心微丝不断瞎长,最终在细胞中央的胞质内形成一个非常 类似多个纺锤体结合在一起的网络结构。这一网络的中间部位经常包围着营养核和生殖细胞,网络的部分微丝则与存在周缘细胞质(或称周质)的微丝网络形成连接,在连接点部位则形成一些由微丝环状组成的结构。未成熟花粉中央的微丝网络可能与营养核和生殖细胞在未成熟花粉内的运动有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号