首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical investigation of the root of Rosa laevigata led to the isolation of sixteen phenolic compounds, including seven flavonoids (17), five condensed tannins (812), two stilbenes (13 and 14) and two benzoic acid derivatives (15 and 16). Their structures were identified as (+)-catechin (1), (+)-gallocatechin (2), (2R, 3S, 4S)-cis- leucocyanidin (3), (2R, 3S, 4S)-cis-leucofisetinidin (4), (2S, 3R, 4R)-cis- leucofisetinidin (5), dehydrodicatechin A (6), phloridzin (7), procyanidin B3 (8), fisetinidol-(4α, 8)-catechin (9), guibourtinidol- (4α, 8)-catechin (10), ent- isetinidol -(4α, 6)-catechin (11), fisetinidol-(4β, 8)-catechin (12), (Z)-3-methoxy-5-hydroxy- stilbene (13), (Z)-piceid (14), gallic acid (15) and 4-hydroxybenzoic acid- 4-O-β-D-glucopyranoside (16). Among them, compounds 3–7, 9–14, and 16 were isolated from R. laevigata for the first time, and compounds 3–7, 9, 10, 1214 and 16 were reported for the first time from the genus Rosa. The chemotaxonomic significance of these compounds was summarized.  相似文献   

2.
A phytochemical study of chloroform-methanol and methanol extracts of Joannesia princeps Vell. Leaves led to the isolation of twenty eight compounds, including two α-ionones (2, 5), three glycosylated monoterpenes (1, 3, 4), eight phenolic compounds (6, 8, 9, 12, 14, 17, 18, 24), two gallotannins (10, 11), twelve flavonoids (7, 15, 16, 19, 2023, 2528), and one lignan (13). The structural characterization of the isolated compounds was performed by spectroscopic data and comparison with the literature. All compounds were isolated from this species and from the genus Joannesia for the first time. The chemotaxonomic importance of these metabolites is therefore summarized.  相似文献   

3.
Phytochemical investigation of Lespedeza cuneata led to the isolation of seventeen compounds including three steroids (β-sitosterol 1, β-sitosterol-6′-linolenoyl-3-O-β-d-glucopyranoside 3, and β-sitosterol glucoside 13), nine flavonoids (quercetin 4, kaempferol 5, isovitexin 8, hirsutrin 9, nicotiflorin 10, vitexin 11, astragalin 12, trifolin 14, and isorhamnetin 17), two phenolics (benzyl-β-d-glucopyranoside 7 and homovanillyl alcohol 16), one carotenoid (loroxanthin 2), one lignin (7R,8S–dihydrodehydrodiconiferyl alcohol 15), and one hexose (pinitol 6) on the basis of their spectroscopic data. Among these compounds, 2, 3, 7, 15 and 16 were reported for the first time from the genus Lespedeza. The taxonomic significance of these isolated compounds was also summarized.  相似文献   

4.
Twenty compounds, including three sterols (13), three phenols (4, 14 and 15), four anthraquinones (5, 7, 8 and 16), one chromone (6), two stilbenes (9 and 10), three amides (1113), three flavonoids (1719) and one organic acid (20), were obtained by modern phytochemical isolation methods. Their structures were identified by spectroscopic methods and in comparison with the published data in the references. Among them, compound 2, 3, 11 and 13 were firstly discovered from genus Fallopia, and compounds 1, 58, 10, 14, 15, 17, 19 and 20 were obtained from F. convolvulus for the first time. The chemotaxonomic significance of these compounds was also discussed, which revealed the relationships between F. convolvulus and some other species of Polygonaceae family.  相似文献   

5.
Chemical study of Piper crocatum leaves has led to isolation of a new megastigmane glucoside isomer (18), along with 23 known compounds including fifteen phenolic compounds (115), two monoterpenes (16 and 17), three sesquiterpenes (1921), a phenolic amide glycoside (22), a neolignan (23), and a flavonoid C-glycoside (24). Structures of these compounds were identified via spectroscopic methods and compared with those reported in the literature. Seven compounds (7, 11, 13, 14, 17, 20, and 24) from the P. crocatum species and 17 others (16, 810, 12, 1516, 1819, and 2123) from the Piper genus and Piperaceae family were isolated and reported for the first time. Furthermore, this study discusses chemotaxonomic relations between P. crocatum and other Piper species.  相似文献   

6.
Phytochemical investigation of the aerial parts of Eremostachys moluccelloides Bunge led to the identification of a new diterpene, 2β,14-dihydroxy −11-formyl- 12-carboxy-13-des-isopropyl-13-hydroxymethyl-abieta-8,11,13- triene- 16(17)- lactone (1), along with the known compounds 12, 18-dicarboxy-14-hydroxy-13-des -isopropyl-13-hydroxymethyl- abieta-8,11,13-triene-16(17)-lactone (2), 5-hydroxy-3′,4′,7-trimethoxyflavone (3), 5-hydroxy-4’,7-dimethoxyflavone (4), luteolin-7-O-β-glucoside (5), verbascoside (6), luteolin 7-O-(6″-O-β-D-apiofuranosyl) -β-D-glucopyranoside (7), chlorogenic acid (8), echinacoside (9), apigenin-7-O-β-D-glucoside (10), p-coumaric acid (11), vanillic acid (12), apigenin-7-O-(6″-E-p-coumaroyl)-β-D-glucopyranoside (13), apigenin-7-O-(3″,6″-E-p-dicoumaroyl)-β-glucoside (14), lamalbide (15), 6β-hydroxy-7-epi-loganin (16), phloyoside II (17) The structures were elucidated on the basis of 1D and 2D NMR spectroscopy, UV, MS and by comparison with compounds previously reported in the literature. Compounds 14, 8, 9, 11, 12, 14 have not been reported previously from any species within the genus Eremostachys. Compounds 114, 17 were obtained from this species for the first time. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

7.
Phytochemical investigations on the fruit stalks and seeds of the plant Hovenia dulcis Thunb. led to the isolation of twenty-one compounds, including three triterpenes (13), two sterols (4–5), five flavonoids (610), two sesquiterpenes (1112), one lignan (13), two phenylpropanoids (1415), four benzoic acid derivatives (1619), one acid amide (20) and one cerebroside (21). The structures of these compounds were elucidated on the basis of spectroscopic analysis and comparison with previous literatures. Among them, ten compounds (4, 1112, 1420) were isolated from familiy Rhamnaceae, two (13, 21) from the genus Hovenia, and three (5, 8, 10) from the species Hovenia dulcis Thunb. for the first time, respectively. The chemotaxonomic significance of these isolates was also discussed.  相似文献   

8.
Phytochemical investigation of the whole plants of Lagopsis supina (Steph.) Ik.-Gal. ex Knorr. led to the isolation of 18 compounds (118), including ten phenylethanoid glycosides (110), one phenylmethanoid glycoside (11), four megastigmane glycosides (1215), and three monoterpenoid glycosides (1618). Lagopsides A (1) and B (2) were identified as new phenylethanoid glycosides. This is the first report of compounds 7, 11, 12, 15, and 16 from the Labiatae family, while compounds 46, 810, 1314, and 1718 were isolated from the genus Lagopsis for the first time. The chemotaxonomic significance of these isolated compounds was summarized.  相似文献   

9.
A comprehensive phytochemical investigation of the stems and leaves of Schisandra chinensis (Turcz.) Baill. resulted in isolation of seventeen compounds, including five lignans: meso-dihydroguaiaretic acid (1), licarin-A (2), pregomisin (3), gomisin A (4), acutissimanide (5), three phenylpropanoids: 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol (6), 2-methoxy-4-(2-propenyl) phenyl β-D-glucopyranoside (7), erigeside 2 (8), six sesquiterpenoids: 7′-hydroxy-abscisic acid (9), burmannic acid (10), (3S,5R,6R,7E)-3,5,6-trihydroxy-7-megastigmen-9-one (11), 3-Cyclohexene-1,2-diol, 4-(3-hydroxybutyl)- 3, 5, 5-trimethyl- (12), (−)-loliolide (13), (3Z,5R,8R,11R)-Caryophyll-3-ene-5,8,15-triol (14), one monoterpenoid: (6R,3Z)-6,7-dihydroxy-3,7-dimethyl-2-octenoic acid (15) and two other compounds: methyl shikimate (16), 4-Hydroxydodec-2-enedioic acid (17). Their chemical structures were confirmed through NMR, HRESIMS and comparison with the data in the literature. This is the first report of compounds 5, 6, 815, 17 from the family Schisandraceae and compounds 2, 16 from the genus Schisandra. Furthermore, we performed a chemotaxonomic study of the separated compounds.  相似文献   

10.
The chemical investigation of whole plants Euphorbia stracheyi Boiss. led to the isolation of 14 compounds, including eight diterpenes (18), one monoterpene (9), three coumarins (1012), and two phenols (1314). Their structures were elucidated by extensive spectroscopic analyses and by comparison with the literature. Compounds 16, and 812 were firstly isolated from E. stracheyi, while compounds 6, and 9 were isolated from Euphorbia genus for the first time. The chemotaxonomic significance of these isolated compounds is discussed.  相似文献   

11.
Microbial transformation of neoandrographolide (1), was performed by Mucor spinosus (AS 3.2450). Ten metabolites were obtained and identified as 14-deoxyandrographolide (2), 17,19-dihydroxy-8,13-ent-labdadien-16,15-olide (3), 3,14-dideoxyandrographolide (4), 7β-hydroxy-3,14-dideoxyandrographolide (5), 17,19-dihydroxy-7,13-ent-labdadien-16,15-olide (6), 8(17),13-ent-labdadien-16,15-olid-19-oic acid (7), 8α,17β-epoxy-3,14-dideoxyandrographolide (8), 8β,17,19-trihydroxy-ent-labd-13-en-16, 15-olide (9), phlogantholide-A (10), 19-[(β-d-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide (11) by spectroscopic and chemical means. Among them, products 3, 5, 6, 8 and 9 were characterized as new compounds. The inhibitory effects of compounds 111 on nitric oxide production in lipopolysaccharide-activated macrophages were evaluated and their preliminary structure–activity relationships (SAR) were discussed.  相似文献   

12.
The phytochemical study of Piper pleiocarpum Chang ex Tseng led to the isolation of eighteen compounds (118), including ten lignanoids, galbelgin (1), (+) sesamin (2), denudatin A (3), hancinone (4), (7S,8S, 3′R)-Δ8'-3,3′,4-trimethoxy-3′,6′-dihydro-6′-oxo-7.0.4′,8.3′-lignan[(2S,3S,3aR)-2-(3,4-dimethoxyphenyl)-3,3a-dihydro-3a-methoxy-3-methyl-5-(2-propenyl)-6(2H))-benzofuranone] (5), (−)-(7R,8R)-machilin D (6), (1R,2R)-2-[2-methoxy-4-((E)-prop-1-enyl)phenoxy]-1-(3,4-dimethoxyphenyl)propyl acetate (7), piperbonin A (8), machilin D (9), 4-methoxymachilin D (10), one amide alkaloid, Δα,β-dihydropiperine (11), six polyoxygenated cyclohexenes, ent-curcuminol F (12), uvaribonol E (13), ellipeiopsol A (14), 1S,2R,3R,4S-1-ethoxy-2-[(benzoyloxy)methyl]cyclohex-5-ene-2,3,4-triol, 3-acetate (15), (+)-crotepoxide (16), (+)-senediol (17), and one benzoate derivative, 2-acetoxybenzyl benzoate (18). Their structures were established by spectroscopic data and by comparison with the literature. All the compounds were firstly isolated from P. pleiocarpum, while ten compounds 67, 910, 1215, 1718 were isolated from the genus Piper and the family Piperaceae for the first time. The chemotaxonomic significance of these compounds was also discussed. The isolation of compounds 67, 910 may be used as chemotaxonomic markers for the genus of Piper.  相似文献   

13.
Sixteen compounds were isolated from the whole herbs of Peperomia tetraphylla (Forst. F.) Hooker et Arnott by phytochemical methods, including eight flavonoids (1–3, 6, 7, 1416), three lignans (8–10), three beta sitosterols (4, 5, 11), and two phenolic acids (12, 13). Their structures were identified by the analysis of NMR and MS, as well as the comparisons to the reported data. Among them, 2″-O-xylosylisoswertisin (14) was firstly isolated from the Piperaceae family, as well as ten compounds (1–4, 7, 10–11, 13, 15–16) were isolated from P. tytraphylla for the first time. Moreover, the chemotaxonomic significance of constituents isolated from P. tytraphylla was also discussed.  相似文献   

14.
The phytochemical study of the roots of Scorzonera divaricata Turcz led to the isolation of 27 compounds, including eight sterols (18), one lignan (9), two cumarins (10, 11), five phenylpropanoids (1216), six benzene derivatives (1722), methyl-β-D-fructofuranoside (23), monolinolein (24), and three aliphatic acids (2527). The structures of isolated compounds were identified using NMR and ESI-MS spectroscopic methods and comparing them with those previously reported. Except for β-daucosterol (8), scopoletin (10) and caffeic acid (16) from S. divaricata, this is the first report of the other 24 compounds from S. divaricata. Among them, eleven compounds (26, 11, 17, 19, 20, 23, 25) were reported from genus Scorzonera for first time, suggesting that they could be used to distinguish S. divaricata from the other species of Scorzonera. Furthermore, the chemotaxonomic significance of isolated compounds from S. divaricata has also been discussed.  相似文献   

15.
The chemical investigation of whole plants Piper boehmeriifolium (Miq.) Wall. ex C. DC. led to the isolation of 22 compounds, including two lignans (12), sixteen amide alkaloids (318), one diterpene (19), two monoterpenes (2021), and one phenylpropanoid (22). Their structures were elucidated by extensive spectroscopic analyses including NMR, MS, and by comparison with the literature. Compounds 12, 67, 1112, 14, and 1722 were firstly isolated from P. boehmeriifolium, while compounds 2, and 1920 were isolated from Piper genus for the first time. The chemotaxonomic significance of these isolated compounds is discussed.  相似文献   

16.
Phytochemical investigation of Gentianella turkestanorum (Gentianaceae) afforded nineteen compounds, including six xanthones (1–6), two triterpenoids (7–8), eight flavones (9–16) and three iridoids (17–19). Here, we firstly reported that 1-hydroxy-3,5-dimethoxyxanthone (4), 1, 8-dihydroxy-3-methoxyxanthone (5), apigenin (9), quercetin (10), luteolin-7-O-glucoside (12) and three other compounds (1, 8-dihydroxy-3-methoxyxanthone (5), apigenin-7-O-gluco (1″ → 3‴) glucoside (15) and luteolin-7-O-gluco (1″ → 3‴) glucoside (16)) could be isolated from G. turkestanorum. The occurrence of chemical data and the sequence data might be employed as common constituents of the genera Gentianella, Lomatogonium and Swertia.  相似文献   

17.
A phytochemical investigation of the roots extract of Cichorium glandulosum led to the isolation and characterization of fourteen compounds, including five sesquiterpene lactones (15), five flavonoids (610), and four lignans (1114). Their structures were determined by spectroscopic data analysis and comparison with the literatures. This is the first report of the crystal data of lactucopicrin (1). This is the first time to report the isolation of 6,8,11-epi-desacetylmatricarin (2), desacetylmatricarin (3), ixerisoslde C (4), magnodelavin (5), 2ʹ,4-dihydroxy-4ʹ-methoxy-6ʹ-O-β-glucopyranoside dihydrochalcone (6), (−)-evofolin B (7), isoquercitrin (8), myricetin 7-methyl-ether-3-O-glucoside (9), (+)-medioresinol (12), 4-O-methylcedrusin [2-(3ʹ,4ʹ-dimethoxyphenyl)-3-hydroxymethyl-2,3-dihydro-7-hydroxybenzofuran-5-propan-1-ol] (13), and (2R,3S)-samwirin A (14) from C. glandulosum. Among them, compounds 5, 9, 13, and 14 were obtained from Asteraceae family for the first time. The chemotaxonomic significance of all the isolates 114 was discussed.  相似文献   

18.
Broussonetia papyrifera has been used as a diuretic, tonic and suppressor of edema. Bioactivity-guided fractionation and metabolite investigation of root bark extracts of this plant resulted in the isolation and identification of six 1,3-diphenylpropanes (1, 2, 8, 10, 17, 20), flavanone (3), two chalcones (4, 5), five flavans (6, 11, 1416), dihydroflavonol (7) and five flavonols (9, 12, 13, 18, 19), including five new compounds (5, 7, 8, 19, 20) that inhibit NO production in LPS-induced RAW264.7 cells. The structures of compounds 120 were elucidated on the basis of spectroscopic data (1D and 2D NMR, MS, MS/MS, and HRMS). In particular, compounds 3, 5, 7, 12, and 20 exhibited significant inhibitory effects on the NO, iNOS, and pro-inflammatory cytokine (TNF-α and IL-6) production. Therefore, this study suggests that the flavonoid-rich products of B. papyrifera, including the new compounds, could be valuable candidates for the development of pharmaceuticals or functional foods in the prevention and treatment of anti-inflammatory disease.  相似文献   

19.
Phytochemical investigation of Bulbophyllum wendlandianum (Kraenzl.) Dammer led to the isolation of twenty-three compounds 1–23 (flavanthrinin 1, coelonin 2, lusianthridin 3, densiflorol B 4, plicatol B 5, batatasin-lll 6, gigantol 7, 5-hydroxy-3,3′-dimethoxy-2-(p-hydroxybenzyl) bibenzyl 8, 2,2-dimethyl-5-hydroxy-6-carboxy-7-(2-phenylethyl) 9, tristin 10, p-hydroxybenzyl ethyl ether 11, p-hydroxybenzaldehyde 12, hydroquinone 13, coniferaldehyde 14, p-hydroxybenzyl alcohol 15, 3,4-dihydroxy benzaldehyde 16, stigmasterol 17, β-sitosterol 18, ergosterol peroxide 19, (+)pinoresinol 20, n-butyl sulfoxide 21, tridec-4E-en-l-yl acetate 22, ethyl linolate 23) including five phenanthrenes 1–5, five bibenzyls 6–10, six phenols 11–16, three sterols 17–19, one lignan 20, one n-butyl sulfoxide 21 and two fatty acids 22–23. The structures of these compounds were elucidated by spectroscopic analyses. This is the first report of isolation of compounds 1–23 from Bulbophyllum wendlandianum and compounds 8–9, 11, 13, 15–16 and 19–23 within genus Bulbophyllum. Compound 21 is a new natural product, isolated from a natural source for the first time. Furthermore, the chemotaxonomic significance of the isolates was also discussed.  相似文献   

20.
The chemical study of the stems extract of Psychotria arborea Hiern led to the isolation of thirteen compounds, including four anthraquinones: 2-methylanthracene-9,10-dione (1), 2-methoxyanthracene-9,10-dione (2), 2-hydroxy-3-methylanthracene-9,10-dione (3) and 3-hydroxy-1-methoxy-2-methylanthracene-9,10-dione (4); two diterpenes: ent-kaur-16-en-19-oic acid (5) and 15-acetoxy-ent-kaur-16-en-19-oic acid (6); two triterpenes, β-amyrin (8) and oleanolic acid (9), one flavonoid: Quercetin (7), three sterols: A mixture of stigmasterol (10) and β-sitosterol (11) and β-sitosterol-3-O-β-D-glucopyranoside (12) and one fatty acid (13). The structures of these compounds were elucidated based on NMR and HR-ESIMS analysis, further supported by comparison with previously reported spectral data. Compounds 14 and compounds 1012 were tested for their antibacterial activity against three bacteria strains Escherichia coli, Staphylococcus aureus and Salmonella enterica. All these tested compounds were found to be inactive. Furthermore, the chemotaxonomic significance of the obtained compounds was discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号