首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Kol, Bhil and Gond are some of the ancient tribal populations known from the Ramayana, one of the Great epics of India. Though there have been studies about their affinity based on classical and haploid genetic markers, the molecular insights of their relationship with other tribal and caste populations of extant India is expected to give more clarity about the the question of continuity vs. discontinuity. In this study, we scanned >97,000 of single nucleotide polymorphisms among three major ancient tribes mentioned in Ramayana, namely Bhil, Kol and Gond. The results obtained were then compared at inter and intra population levels with neighboring and other world populations. Using various statistical methods, our analysis suggested that the genetic architecture of these tribes (Kol and Gond) was largely similar to their surrounding tribal and caste populations, while Bhil showed closer affinity with Dravidian and Austroasiatic (Munda) speaking tribes. The haplotype based analysis revealed a massive amount of genome sharing among Bhil, Kol, Gond and with other ethnic groups of South Asian descent. On the basis of genetic component sharing among different populations, we anticipate their primary founding over the indigenous Ancestral South Indian (ASI) component has prevailed in the genepool over the last several thousand years.  相似文献   

2.

MATERIALS AND METHODS:

The genetic diversity and forensic parameters based on 15 autosomal short tandem repeats (STR) loci; D8S1179,D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317,D16S539, D2S1338, D19S433, vWA, TPOX, D18S51,D5S818, and FGA in AmpFLSTR® Identifiler™ kit from Applied Biosystems, Foster City, CA, USA were evaluated in saliva samples of 297 unrelated individuals from the Bhil Tribe population of Gujarat state, India to study genetic diversities and relatedness of this population with other national and international populations.

RESULTS:

Statistical analysis of the data revealed all loci were within Hardy-Weinberg Equilibrium expectations with the exception of the locus vWA (0.019) and locus D18S51 (0.016). The neighbour joining phylogeny tree and Principal Co-ordinate Analysis plot constructed based on Fst distances from autosomal STRs allele frequencies of the present study and other national as well as international populations show clustering of all the South Asian populations in one branch of the tree, while Middle Eastern and African populations cluster in a separate branch.

CONCLUSION:

Our findings reveal strong genetic affinities seen between the Indo-European (IE) speaking Bhil Tribe of Gujarat and Dravidian groups of South India.  相似文献   

3.
The Austroasiatic linguistic family disputes its origin between two geographically distant regions of Asia, India, and Southeast Asia, respectively. As genetic studies based on classical and gender-specific genetic markers provided contradictory results to this debate thus far, we investigated the HLA diversity (HLA-A, -B, and -DRB1 loci) of an Austroasiatic Munda population from Northeast India and its relationships with other populations from India and Southeast Asia. Because molecular methods currently used to test HLA markers often provide ambiguous results due to the high complexity of this polymorphism, we applied two different techniques (reverse PCR-SSO typing on microbeads arrays based on Luminex technology, and PCR-SSP typing) to type the samples. After validating the resulting frequency distributions through the original statistical method described in our companion article ( Nunes et al. 2011 ), we compared the HLA genetic profile of the sampled Munda to those of other Asiatic populations, among which Dravidian and Indo-European-speakers from India and populations from East and Southeast Asia speaking languages belonging to different linguistic families. We showed that the Munda from Northeast India exhibit a peculiar genetic profile with a reduced level of HLA diversity compared to surrounding Indian populations. They also exhibit less diversity than Southeast Asian populations except at locus DRB1. Several analyses using genetic distances indicate that the Munda are much more closely related to populations from the Indian subcontinent than to Southeast Asian populations speaking languages of the same Austroasiatic linguistic family. On the other hand, they do not share a closer relationship with Dravidians compared with Indo-Europeans, thus arguing against the idea that the Munda share a common and ancient Indian origin with Dravidians. Our results do not favor either a scenario where the Munda would be representative of an ancestral Austroasiatic population giving rise to an eastward Austroasiatic expansion to Southeast Asia. Rather, their peculiar genetic profile is better explained by a decrease in genetic diversity through genetic drift from an ancestral population having a genetic profile similar to present-day Austroasiatic populations from Southeast Asia (thus suggesting a possible southeastern origin), followed by intensive gene flow with neighboring Indian populations. This conclusion is in agreement with archaeological and linguistic information. The history of the Austroasiatic family represents a fascinating example where complex interactions among culturally distinct human populations occurred in the past.  相似文献   

4.

BACKGROUND:

The present sero-genetic study is the first of its kind to present the baseline data of Bharia tribe of Madhya Pradesh. The main aim of this study is to provide phenotype and allele-frequency data to characterize the population genetically and to fill the void on the genetic map of Madhya Pradesh.

MATERIALS AND METHODS:

For this, blood samples from 92 unrelated healthy individuals of Bharia tribe from Chhindwara district (Tamia block) were collected. Hemolysates prepared were analyzed for two serological (A1A2BO and Rh) and six biochemical (adenosine deaminase, adenylate kinase locus 1, acid phosphatase locus 1, phosphoglucomutase locus 1, esterase D and glucosephosphate isomerase) parameters, following the standard electrophoretic techniques.

RESULTS:

The Chi-square test for goodness of fit revealed no significant deviation between the observed and expected numbers in any of the seven genetic markers, suggesting that the tribe is in genetic equilibrium. A high incidence of B allele in A1A2BO blood group and low incidence of the A1 allele, with presence of A2 in only one individual, and a low frequency of Rh(D) (Rh negative allele) was observed in serological markers. Also, no rare variant was observed for biochemical markers.

CONCLUSION:

Principal Component Analysis done in order to detect the genetic affinity of Bharia tribe with other populations from the adjoining states of Madhya Pradesh based on the allele frequencies, showed a close association of Bharia with Gujarat and Rajasthan. Hence, this study has been helpful in revealing the genetic structure and affinity of Bharia tribe.  相似文献   

5.

Background

The phylogeny of the indigenous Indian-specific mitochondrial DNA (mtDNA) haplogroups have been determined and refined in previous reports. Similar to mtDNA superhaplogroups M and N, a profusion of reports are also available for superhaplogroup R. However, there is a dearth of information on South Asian subhaplogroups in particular, including R8. Therefore, we ought to access the genealogy and pre-historic expansion of haplogroup R8 which is considered one of the autochthonous lineages of South Asia.

Methodology/Principal Findings

Upon screening the mtDNA of 5,836 individuals belonging to 104 distinct ethnic populations of the Indian subcontinent, we found 54 individuals with the HVS-I motif that defines the R8 haplogroup. Complete mtDNA sequencing of these 54 individuals revealed two deep-rooted subclades: R8a and R8b. Furthermore, these subclades split into several fine subclades. An isofrequency contour map detected the highest frequency of R8 in the state of Orissa. Spearman''s rank correlation analysis suggests significant correlation of R8 occurrence with geography.

Conclusions/Significance

The coalescent age of newly-characterized subclades of R8, R8a (15.4±7.2 Kya) and R8b (25.7±10.2 Kya) indicates that the initial maternal colonization of this haplogroup occurred during the middle and upper Paleolithic period, roughly around 40 to 45 Kya. These results signify that the southern part of Orissa currently inhabited by Munda speakers is likely the origin of these autochthonous maternal deep-rooted haplogroups. Our high-resolution study on the genesis of R8 haplogroup provides ample evidence of its deep-rooted ancestry among the Orissa (Austro-Asiatic) tribes.  相似文献   

6.

Background and Aims

Evolutionary transitions between separate and combined sexes have frequently occurred across various plant lineages. In mosses, which are haploid-dominant, evolutionary transitions from separate to combined sexes are often associated with genome doubling. Polyploidy and hermaphroditism have strong effects on the inbreeding depression of a population, and are subsequently predicted to affect the mating system.

Methods

We tested the association between ploidy (haploid, diploid or triploid gametophytes) and mating system in 21 populations of Atrichum undulatum sensu lato, where sex ratios vary widely. For each population, we measured the sex ratio, estimated selfing rates using allozyme markers and determined the level of ploidy through flow cytometry.

Key Results

Hermaphrodites in A. undulatum were either diploid or triploid. However, many diploid populations were strictly separate-sexed, suggesting that hermaphroditism is not a necessary result of genome doubling. Levels of selfing were strongly supported as being greater than zero in one population with strictly separate-sexed individuals, and one-third of populations with hermaphrodites.

Conclusions

Although hermaphrodites are associated with triploidy, hermaphroditism is not a necessary outcome of genome duplication. Hermaphroditism, but not genome duplication alone, increased estimated selfing rates, probably due to the occurrence of selfing within a gametophyte. Thus, genome duplication can influence the mating system and the associated evolution and maintenance of reproductive traits.  相似文献   

7.
Yang S  Zhang H  Mao H  Yan D  Lu S  Lian L  Zhao G  Yan Y  Deng W  Shi X  Han S  Li S  Wang X  Gou X 《PloS one》2011,6(12):e28215

Background

The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig.

Methods and Findings

We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively.

Conclusions

We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region.  相似文献   

8.

Background

Association of mitochondrial haplogroup J with longevity has been reported in several population subgroups. While studies from northern Italy and Finland, have described a higher frequency of haplogroup J among centenarians in comparison to non-centenarian, several other studies could not replicate these results and suggested various explanations for the discrepancy.

Methodology/Principal Findings

We have evaluated haplogroup frequencies among Ashkenazi Jewish centenarians using two different sets of matched controls. No difference was observed in the haplogroup J frequencies between the centenarians or either matched control group, despite adequate statistical power to detect such a difference. Furthermore, the lack of association was robust to population substructure in the Ashkenazi Jewish population. Given this discrepancy with the previous reported associations in the northern Italian and the Finnish populations, we conducted re-analysis of these previously published data, which supported one of several possible explanations: i) inadequate matching of cases and controls; ii) inadequate adjustment for multiple comparison testing; iii) cryptic population stratification.

Conclusions/Significance

There does not exist a universal association of mitochondrial haplogroup J with longevity across all population groups. Reported associations in specialized populations may reflect genetic or other interactions specific to those populations or else cryptic confounding influences, such as inadequate matching attributable to population substructure, which are of general relevance to all studies of the possible association of mitochondrial DNA haplogroups with common complex phenotypes.  相似文献   

9.

Background and Aims

Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal.

Methods

Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos.

Key Results

A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species.

Conclusions

The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.  相似文献   

10.

Background

Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization.

Principal Findings

We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations.

Conclusions

These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age.  相似文献   

11.

Background and Aims

Myrica rivas-martinezii is a critically endangered endemic of the laurel forest of the Canary Islands and co-occurs very close to M. faya. Some authors suggest that M. rivas-martinezii and M. faya are two morphs of the same species, so molecular markers were used to estimate the levels and structuring of genetic variation within and among natural populations in order to evaluate genetic relationships between these two congeners.

Methods

Six polymorphic microsatellite (simple sequence repeat, SSR) markers were used to determine the genetic diversity and the genetic relationship between both Myrica species.

Key Results

Most of the natural populations analysed were in Hardy–Weinberg equilibrium for both taxa. Analysis of molecular variance (AMOVA) for both species revealed that most of the genetic variability detected was contained within populations (92·48 and 85·91 % for M. faya and M. rivas-martinezii, respectively), which it is consistent with outcrossing and dioecious plants. Estimates of interpopulation genetic variation, calculated from FST and GST, were quite low in the two taxa, and these values did not increase substantially when M. rivas-martinezii and M. faya populations were compared. The UPGMA dendrogram based on Nei''s genetic distance clustered the populations by their island origin, independently of taxon. In fact, the mixture of individuals of both taxa did not appreciably disrupt the intrapopulational genetic cohesion, and only 3·76 % variation existed between species.

Conclusions

All the results obtained using molecular markers indicate clearly that both taxa share the same genetic pool, and they are probably the same taxa. Considering that M. rivas-martinezii is classified as at risk of extinction, there should be a change of focus of the current management actions for the conservation of this putatively endangered Canarian endemic.Key words: Canary Islands, conservation genetics, microsatellites, Myrica rivas-martinezii, Myrica faya, plant conservation  相似文献   

12.

Background

The Koreans are generally considered a northeast Asian group because of their geographical location. However, recent findings from Y chromosome studies showed that the Korean population contains lineages from both southern and northern parts of East Asia. To understand the genetic history and relationships of Korea more fully, additional data and analyses are necessary.

Methodology and Results

We analyzed mitochondrial DNA (mtDNA) sequence variation in the hypervariable segments I and II (HVS-I and HVS-II) and haplogroup-specific mutations in coding regions in 445 individuals from seven east Asian populations (Korean, Korean-Chinese, Mongolian, Manchurian, Han (Beijing), Vietnamese and Thais). In addition, published mtDNA haplogroup data (N = 3307), mtDNA HVS-I sequences (N = 2313), Y chromosome haplogroup data (N = 1697) and Y chromosome STR data (N = 2713) were analyzed to elucidate the genetic structure of East Asian populations. All the mtDNA profiles studied here were classified into subsets of haplogroups common in East Asia, with just two exceptions. In general, the Korean mtDNA profiles revealed similarities to other northeastern Asian populations through analysis of individual haplogroup distributions, genetic distances between populations or an analysis of molecular variance, although a minor southern contribution was also suggested. Reanalysis of Y-chromosomal data confirmed both the overall similarity to other northeastern populations, and also a larger paternal contribution from southeastern populations.

Conclusion

The present work provides evidence that peopling of Korea can be seen as a complex process, interpreted as an early northern Asian settlement with at least one subsequent male-biased southern-to-northern migration, possibly associated with the spread of rice agriculture.  相似文献   

13.
Friberg U  Stewart AD  Rice WR 《PloS one》2011,6(8):e23508

Background

Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male''s X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them.

Results

Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons.

Conclusion

Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.  相似文献   

14.

Background and Aims

Successful establishment of newly formed polyploid species depends on several interlinked genetic and ecological factors. These include genetic diversity within and among individuals, chromosome behaviour and fertility, novel phenotypes resulting from novel genomic make-up and expression, intercytotypic and interspecific competition, and adaptation to distinct habitats. The allotetraploid rock fern Asplenium majoricum is known from one small population in Valencia, Spain, and several larger populations on the Balearic island of Majorca. In Valencia, it occurs sympatrically with its diploid parents, A. fontanum subsp. fontanum and A. petrarchae subsp. bivalens, and their diploid hybrid A. × protomajoricum. This highly unusual situation allowed the study of polyploid genetic diversity and its relationship to the formation and establishment of nascent polyploid lineages.

Methods

Genetic variation for isozyme and chloroplast DNA markers was determined for A. majoricum and A. × protomajoricum sampled thoroughly from known sites in Majorca and Valencia. Results were compared with variation determined previously for the diploid parent taxa.

Key Results

A highly dynamic system with recurring diploid hybrid and allotetraploid formation was discovered. High diversity in the small Valencian A. majoricum population indicates multiple de novo origins from diverse parental genotypes, but most of these lineages become extinct without becoming established. The populations on Majorca most probably represent colonization(s) from Valencia rather than an in situ origin. Low genetic diversity suggests that this colonization may have occurred only once.

Conclusions

There is a striking contrast in success of establishment of the Majorcan and Valencian populations of A. majoricum. Chance founding of populations in a habitat where neither A. fontanum subsp. fontanum nor A. petrarchae subsp. bivalens occurs appears to have been a key factor enabling the establishment of A. majoricum on Majorca. Successful establishment of this polyploid is probably dependent on geographic isolation from diploid progenitor competition.  相似文献   

15.

Background and Aims

Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing.

Methods

Flow cytometry was used first to measure the relative DNA values [with 4′,6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids.

Key Results

A considerable variation of DNA 2C values (5·26–7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48–10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology.

Conclusions

Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.  相似文献   

16.

Background and Aims

The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.

Methods

Four diploid microsatellite loci were used to genotype 19–20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.

Key Results

Both populations had similar, intermediate outcrossing rates (tm = 0·64 and 0·52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.

Conclusions

The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.  相似文献   

17.
Microsatellite diversity was analyzed in four Proto-Australoid tribes, including Indo-European (Marathi)-speaking Katkari, Pawara, Mahadeo-Koli, and Dravidian (Gondi)-speaking groups of Maharashtra, west-central India, to understand their genetic structure and to identify the congruence between language and gene pool. Allele frequency data at 15 short tandem repeat (STR) loci in studied tribes was compared with data of 22 Indo-European- and Dravidian-speaking caste and tribal populations using heterozygosity, allele size variance, analysis of molecular variance (AMOVA), G(ST) estimate, PC plot, and Mantel correlation test. Our results demonstrate that "Gondi" tribes comprising the Madia-Gond, a hunter-gatherer population, and the agriculturist Dheria-Gond harbor lower diversity than "Marathi" tribal groups, which are culturally and genetically distinct. Katkari, a hunter-gatherer tribe, showed greater diversity and the presence of a large number of unique alleles, genetically distinct from all others except the Pawara, supporting their old cultural links. The agriculturist Pawara tribe represents a splinter subgroup of the Bhil tribe and has experienced gene flow. The Mahadeo-Koli, an agriculturally oriented tribe, displayed significant heterozygote deficiency, attributable to the practice of high endogamy. The Proto-Australoid tribal populations were genetically differentiated from castes of similar morphology, suggesting different evolutionary mechanisms operating upon the populations. The populations showed genetic and linguistic similarity, barring a few groups with varied migratory histories. The microsatellite variation clearly demonstrates the interplay of sociocultural factors including linguistic, geographical contiguity, and microevolutionary processes in shaping the genetic diversity of populations in contemporary India. This study supports the ethno-historical relationships of Indian populations.  相似文献   

18.
Li D  Li H  Ou C  Lu Y  Sun Y  Yang B  Qin Z  Zhou Z  Li S  Jin L 《PloS one》2008,3(5):e2168

Background

At the southern entrance to East Asia, early population migration has affected most of the Y-chromosome variations of East Asians.

Methodology/Principal Findings

To assess the isolated genetic structure of Hainan Island and the original genetic structure at the southern entrance, we studied the Y chromosome diversity of 405 Hainan Island aborigines from all the six populations, who have little influence of the recent mainland population relocations and admixtures. Here we report that haplogroups O1a* and O2a* are dominant among Hainan aborigines. In addition, the frequency of the mainland dominant haplogroup O3 is quite low among these aborigines, indicating that they have lived rather isolated. Clustering analyses suggests that the Hainan aborigines have been segregated since about 20 thousand years ago, after two dominant haplogroups entered East Asia (31 to 36 thousand years ago).

Conclusions/Significance

Our results suggest that Hainan aborigines have been isolated at the entrance to East Asia for about 20 thousand years, whose distinctive genetic characteristics could be used as important controls in many population genetic studies.  相似文献   

19.

Background and Aims

Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation.

Methods

Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of ‘Tardivo di Ciaculli’ mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype (‘Carrizo’ citrange; Citrus sinensis × Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries.

Key Results

Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area.

Conclusions

Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks.  相似文献   

20.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号