首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Integral membrane enzymes of the MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) family catalyze glutathione-dependent transformations of lipophilic substrates harvested from the lipid bilayer. Recent studies of members of this family have yielded extensive insights into the structural basis for their substrate binding and catalytic activity. Most informative are the structural studies of leukotriene C4 synthase, revealing a narrow hydrophobic substrate binding pocket allowing extensive recognition of the aliphatic chain of the LTA(4) substrate. A key feature of the pocket is a tryptophan residue that pins down the omega-end of the aliphatic chain into the active site. Since MAPEG members cannot utilize a hydrophobic effect for substrate binding, this novel mode of substrate recognition appears well suited for harvesting lipophilic substrates from the membrane. The binding mode also allows for the specific alignment of the substrate in the active site, positioning the C6 of the substrate for conjugation with glutathione. The glutathione is in turn bound in a polar pocket submerged into the protein core. Structure-based sequence alignments of human MAPEG members support the notion that the glutathione binding site is highly conserved among MAPEG enzymes and that they use a similar mechanism for glutathione activation.  相似文献   

2.
The crystal structures of wild-type human theta class glutathione-S-transferase (GST) T1-1 and its W234R mutant, where Trp234 was replaced by Arg, were solved both in the presence and absence of S-hexyl-glutathione. The W234R mutant was of interest due to its previously observed enhanced catalytic activity compared to the wild-type enzyme. GST T1-1 from rat and mouse naturally contain Arg in position 234, with correspondingly high catalytic efficiency. The overall structure of GST T1-1 is similar to that of GST T2-2, as expected from their 53% sequence identity at the protein level. Wild-type GST T1-1 has the side-chain of Trp234 occupying a significant portion of the active site. This bulky residue prevents efficient binding of both glutathione and hydrophobic substrates through steric hindrance. The wild-type GST T1-1 crystal structure, obtained from co-crystallization experiments with glutathione and its derivatives, showed no electron density for the glutathione ligand. However, the structure of GST T1-1 mutant W234R showed clear electron density for S-hexyl-glutathione after co-crystallization. In contrast to Trp234 in the wild-type structure, the side-chain of Arg234 in the mutant does not occupy any part of the substrate-binding site. Instead, Arg234 is pointing in a different direction and, in addition, interacts with the carboxylate group of glutathione. These findings explain our earlier observation that the W234R mutant has a markedly improved catalytic activity with most substrates tested to date compared to the wild-type enzyme. GST T1-1 catalyzes detoxication reactions as well as reactions that result in toxic products, and our findings therefore suggest that humans have gained an evolutionary advantage by a partially disabled active site.  相似文献   

3.
Bioinformatic and enzymatic characterization of the MAPEG superfamily   总被引:1,自引:0,他引:1  
The membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) superfamily includes structurally related membrane proteins with diverse functions of widespread origin. A total of 136 proteins belonging to the MAPEG superfamily were found in database and genome screenings. The members were found in prokaryotes and eukaryotes, but not in any archaeal organism. Multiple sequence alignments and calculations of evolutionary trees revealed a clear subdivision of the eukaryotic MAPEG members, corresponding to the six families of microsomal glutathione transferases (MGST) 1, 2 and 3, leukotriene C4 synthase (LTC4), 5-lipoxygenase activating protein (FLAP), and prostaglandin E synthase. Prokaryotes contain at least two distinct potential ancestral subfamilies, of which one is unique, whereas the other most closely resembles enzymes that belong to the MGST2/FLAP/LTC4 synthase families. The insect members are most similar to MGST1/prostaglandin E synthase. With the new data available, we observe that fish enzymes are present in all six families, showing an early origin for MAPEG family differentiation. Thus, the evolutionary origins and relationships of the MAPEG superfamily can be defined, including distinct sequence patterns characteristic for each of the subfamilies. We have further investigated and functionally characterized representative gene products from Escherichia coli, Synechocystis sp., Arabidopsis thaliana and Drosophila melanogaster, and the fish liver enzyme, purified from pike (Esox lucius). Protein overexpression and enzyme activity analysis demonstrated that all proteins catalyzed the conjugation of 1-chloro-2,4-dinitrobenzene with reduced glutathione. The E. coli protein displayed glutathione transferase activity of 0.11 micromol.min(-1).mg(-1) in the membrane fraction from bacteria overexpressing the protein. Partial purification of the Synechocystis sp. protein yielded an enzyme of the expected molecular mass and an N-terminal amino acid sequence that was at least 50% pure, with a specific activity towards 1-chloro-2,4-dinitrobenzene of 11 micromol.min(-1).mg(-1). Yeast microsomes expressing the Arabidopsis enzyme showed an activity of 0.02 micromol.min(-1).mg(-1), whereas the Drosophila enzyme expressed in E. coli was highly active at 3.6 micromol.min(-1).mg(-1). The purified pike enzyme is the most active MGST described so far with a specific activity of 285 micromol.min(-1).mg(-1). Drosophila and pike enzymes also displayed glutathione peroxidase activity towards cumene hydroperoxide (0.4 and 2.2 micromol.min(-1).mg(-1), respectively). Glutathione transferase activity can thus be regarded as a common denominator for a majority of MAPEG members throughout the kingdoms of life whereas glutathione peroxidase activity occurs in representatives from the MGST1, 2 and 3 and PGES subfamilies.  相似文献   

4.
We have sought the structural basis for the differing substrate specificities of human glutathione transferase P1-1 (class Pi) and human glutathione transferase A1-1 (class Alpha) by adding an extra helix (helix 9), found in the electrophilic substrate-binding site (H-site) of the human class Alpha enzyme, at the C terminus of the human class Pi enzyme. This class Pi-chimera (CODA) was expressed in Escherichia coli, purified and characterized by kinetic and crystallographic approaches. The presence of the newly engineered tail in the H-site of the human Pi enzyme alters its catalytic properties towards those exhibited by the human Alpha enzyme, as assessed using cumene hydroperoxide (diagnostic for class Alpha enzymes) and ethacrynic acid (diagnostic for class Pi) as co-substrates. There is a change of substrate selectivity in the latter case, as the k(cat)/K(m)(EA) value decreases about 70-fold, compared to that of class Pi. With 1-chloro-2,4-dinitrobenzene as co-substrate there is a loss of catalytic activity to about 2% with respect to that of the Pi enzyme. Crystallographic and kinetic studies of the class Pi-chimera provide important clues to explain these altered catalytic properties. The new helix forms many complimentary interactions with the rest of the protein and re-models the original electrophilic substrate-binding site towards one that is more enclosed, albeit flexible. Of particular note are the interactions between Glu205 of the new tail and the catalytic residues, Tyr7 and Tyr108, and the thiol moiety of glutathione (GSH). These interactions may provide an explanation of the more than one unit increase in the pK(a) value of the GSH thiolate and affect both the turnover number and GSH binding, using 1-chloro-2,4-dinitrobenzene as co-substrate. The data presented are consistent with the engineered tail adopting a highly mobile or disordered state in the apo form of the enzyme.  相似文献   

5.
Glutathione transferase reaches 0.5–0.8 mM concentration in the cell so it works in vivo under the unusual conditions of, [S] ? [E]. As glutathione transferase lowers the pKa of glutathione (GSH) bound to the active site, it increases the cytosolic concentration of deprotonated GSH about five times and speeds its conjugation with toxic compounds that are non-typical substrates of this enzyme. This acceleration becomes more efficient in case of GSH depletion and/or cell acidification. Interestingly, the enzymatic conjugation of GSH to these toxic compounds does not require the assumption of a substrate–enzyme complex; it can be explained by a simple bimolecular collision between enzyme and substrate. Even with typical substrates, the astonishing concentration of glutathione transferase present in hepatocytes, causes an unusual “inverted” kinetics whereby the classical trends of v versus E and v versus S are reversed.  相似文献   

6.
Microsomal glutathione transferase-1 (MGST1) is a trimeric, membrane-bound enzyme with both glutathione (GSH) transferase and hydroperoxidase activities. As a member of the MAPEG superfamily, MGST1 aids in the detoxication of numerous xenobiotic substrates and in cellular protection from oxidative stress through the GSH-dependent reduction of phospholipid hydroperoxides. However, little is known about the location of the different substrate binding sites, including whether the transferase and peroxidase activities overlap structurally. Although molecular density attributed to GSH has been observed in the 3.2 A resolution electron crystallographic structure of MGST1, the electrophilic and phospholipid hydroperoxide substrate binding sites remain elusive. Amide H-D exchange kinetics and H-D ligand footprinting experiments indicate that GSH and hydrophobic substrates bind within similar, but distinct, regions of MGST1. Site-directed mutagenesis, guided by the H-D exchange results, demonstrates that specific residues within the GSH footprint effect transferase activity toward 1-chloro-2,4-dinitrobenzene. In addition, cytosolic residues surrounding the chemical stress sensor C49 but not modeled in the crystal structure appear to play an important role in the formation of the binding site for hydrophobic substrates. Although the fatty acid/phospholipid binding site structurally overlaps that for GSH, it does not appear to be localized to the same region as other hydrophobic substrates. Finally, H-D exchange mass spectrometry reveals a specific conformational transition that may mediate substrate binding and/or product release. Such structural changes in MGST1 are essential for activation of the enzyme and are important for its biological function.  相似文献   

7.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

8.
Membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) are involved in biosynthesis of arachidonic-derived mediators of pain, fever, and inflammation as well as in biotransformation and detoxification of electrophilic substances. Structure determination of microsomal glutathione transferase 1 using electron crystallography has provided the first atomic model of an MAPEG member. The homotrimer consists of three repeats of a four-helix transmembrane bundle with the largest extramembranous domain connecting the first and second helix and with a short proline rich loop on the same side between helices three and four. Residues of importance for intramolecular or intermolecular contacts as well as for stabilizing the active site have been identified and the results can be applied for interpreting structure-function relationship for similar MAPEG members.  相似文献   

9.
The human Theta class glutathione transferase GSTT2-2 has a novel sulfatase activity that is not dependent on the presence of a conserved hydrogen bond donor in the active site. Initial homology modeling and the crystallographic studies have identified three conserved Arg residues that contribute to the formation of (Arg107 and Arg239), and entry to (Arg242), a sulfate binding pocket. These residues have been individually mutated to Ala to investigate their potential role in substrate binding and catalysis. The mutation of Arg107 had a significant detrimental effect on the sulfatase reaction, while the Arg242 mutation caused only a small reduction in sulfatase activity. Surprisingly, the Arg239 had an increased activity resulting from a reduction in stability. Thus, Arg239 appears to play a role in maintaining the architecture of the active site. Electrostatic calculations performed on the wild-type and mutant forms of the enzyme are in good agreement with the experimental results. These findings, along with docking studies, suggest that prior to conjugation, the location of 1-menaphthyl sulfate, a model substrate for the sulfatase reaction, is approximately midway between the position ultimately occupied by the naphthalene ring of 1-menaphthylglutathione and the free sulfate. It is further proposed that the Arg residues in and around the sulfate binding pocket have a role in electrostatic substrate recognition.  相似文献   

10.
Detection of glutathione transferase activity on polyacrylamide gels   总被引:1,自引:0,他引:1  
A simple and sensitive assay for glutathione transferase activity on polyacrylamide gel is described. The method is based on the fast reduction of nitroblue tetrazolium salt by glutathione. Blue insoluble formazan colors the gel except in the glutathione transferase area. The stable and defined colorless zone is still detectable with 0.005 unit enzyme. This technique has been successfully applied with enzyme preparations of human heart and other tissues.  相似文献   

11.
Accumulating evidence shows that glutathione peroxidase (GPX, EC.1.11.1.9), one of the most important antioxidant selenoenzymes, plays an essential role in protecting cells and tissues against oxidative damage by catalyzing the reduction of hydrogen peroxide by glutathione. Unfortunately, because of the limited availability and poor stability of GPX, it has not been used clinically to protect against oxidative stress. To overcome these problems, it is necessary to generate mimics of GPX. In this study, we have used directed mutagenesis and the inclusion of a selenocysteine (Sec) insertion sequence to engineer the expression in eukaryotic cells of human glutathione transferase zeta1–1 (hGSTZ1–1) with Sec in the active site (seleno‐hGSTZ1–1). This modification converted hGSTZ1–1 into an active GPX and is the first time this has been achieved in eukaryotic cells. The GPX activity of seleno‐hGSTZ1–1 is higher than that of GPX from bovine liver, indicating Sec at the active site plays an important role in the determination of catalytic specificity and performance. Kinetic studies revealed that the ping–pong catalytic mechanism of Se‐hGSTZ1–1 is similar to that of the natural GPX. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In view of the physiological importance of adrenocortical lipid peroxidation, we have carried out subcellular fractionation to determine the location of glutathione peroxidase, an enzyme which protects against lipid peroxidation. Glutathione peroxidase is present in both cytosolic (92%) and mitochondrial (8%) fractions. The small activity in mitochondria is not due to contamination by the cytosolic activity as evidenced by several rigorous approaches. The mitochondrial enzyme is located in the matrix and appears to be effective in protection from NADPH-dependent lipid peroxidative damage of cytochrome P-450 and succinic dehydrogenase, which are located exclusively in the inner membrane.  相似文献   

13.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

14.
Glutathione transferases (GSTs) are a superfamily of enzymes that play a vital functional role in the cellular detoxification process. They catalyze the conjugation of the thiol group of glutathione (GSH) to the electrophilic groups of a wide range of hydrophobic substrates, leading to an easier removal of the latter from the cells. The kappa class is the least studied one among various classes within the superfamily. We report here the expression, purification, and crystal structure of human kappa class GST (hGSTK), which has been determined by the multiple-isomorphous replacement method and refined to 1.93 A resolution. The overall structure of hGSTK is similar to the recently reported structure of kappa class GST from rat mitochondrion. Each subunit of the dimeric hGSTK contains a thioredoxin (TRX)-like domain and a helical domain. A molecule of glutathione sulfinate, an oxidized product of GSH, is found to bind at the G site of each monomer. One oxygen atom of the sulfino group of GSF forms a hydrogen bond with the hydroxyl group of the catalytic residue Ser16. The TRX-like domain of hGSTK shares 19% sequence identity and structure similarity with human theta class GST, suggesting that the kappa class of GST is more closely related to the theta class enzyme within the GST superfamily. The structure of the TRX-like domain of hGSTK is also similar to that of glutathione peroxidase (GPx), implying an evolutionary relationship between GST and GPx.  相似文献   

15.
Theta class glutathione transferases (GST) from various species exhibit markedly different catalytic activities in conjugating the tripeptide glutathione (GSH) to a variety of electrophilic substrates. For example, the human theta 1-1 enzyme (hGSTT1-1) is 440-fold less efficient than the rat theta 2-2 enzyme (rGSTT2-2) with the fluorogenic substrate 7-amino-4-chloromethyl coumarin (CMAC). Large libraries of hGSTT1-1 constructed by error-prone PCR, DNA shuffling, or saturation mutagenesis were screened for improved catalytic activity towards CMAC in a quantitative fashion using flow cytometry. An iterative directed evolution approach employing random mutagenesis in conjunction with homologous recombination gave rise to enzymes exhibiting up to a 20,000-fold increase in k(cat)/K(M) compared to hGSTT1-1. All highly active clones encoded one or more mutations at residues 32, 176, or 234. Combinatorial saturation mutagenesis was used to evaluate the full complement of natural amino acids at these positions, and resulted in the isolation of enzymes with catalytic rates comparable to those exhibited by the fastest mutants obtained via directed evolution. The substrate selectivities of enzymes resulting from random mutagenesis, DNA shuffling, and combinatorial saturation mutagenesis were evaluated using a series of distinct electrophiles. The results revealed that promiscuous substrate activities arose in a stochastic manner, as they did not correlate with catalytic efficiency towards the CMAC selection substrate. In contrast, chimeric enzymes previously constructed by homology-independent recombination of hGSTT-1 and rGSTT2-2 exhibited very different substrate promiscuity profiles, and showed a more defined relationship between evolved and promiscuous activities.  相似文献   

16.
Rat liver microsomal glutathione transferase 1 (MGST1) is a membrane-bound enzyme that displays both glutathione transferase and glutathione peroxidase activities. We hypothesized that physiologically relevant levels of MGST1 is able to protect cells from oxidative damage by lowering intracellular hydroperoxide levels. Such a role of MGST1 was studied in human MCF7 cell line transfected with rat liver mgst1 (sense cell) and with antisense mgst1 (antisense cell). Cytotoxicities of two hydroperoxides (cumene hydroperoxide (CuOOH) and hydrogen peroxide) were determined in both cell types using short-term and long-term cytotoxicity assays. MGST1 significantly protected against CuOOH and against hydrogen peroxide (although less pronounced and only in short-term tests). These results demonstrate that MGST1 can protect cells from both lipophilic and hydrophilic hydroperoxides, of which only the former is a substrate. After CuOOH exposure MGST1 significantly lowered intracellular ROS as determined by FACS analysis.  相似文献   

17.
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.  相似文献   

18.
19.
Microsomal prostaglandin E synthase type 1 (mPGES-1) converts prostaglandin endoperoxides, generated from arachidonic acid by cyclooxygenases, into prostaglandin E2. This enzyme belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family of integral membrane proteins, and because of its link to inflammatory conditions and preferential coupling to cyclooxygenase 2, it has received considerable attention as a drug target. Based on the high resolution crystal structure of human leukotriene C4 synthase, a model of mPGES-1 has been constructed in which the tripeptide co-substrate glutathione is bound in a horseshoe-shaped conformation with its thiol group positioned in close proximity to Arg-126. Mutation of Arg-126 into an Ala or Gln strongly reduces the enzyme's prostaglandin E synthase activity (85-95%), whereas mutation of a neighboring Arg-122 does not have any significant effect. Interestingly, R126A and R126Q mPGES-1 exhibit a novel, glutathione-dependent, reductase activity, which allows conversion of prostaglandin H2 into prostaglandin F2alpha. Our data show that Arg-126 is a catalytic residue in mPGES-1 and suggest that MAPEG enzymes share significant structural components of their active sites.  相似文献   

20.
The membrane topology of rat liver microsomal glutathione transferase was investigated by comparing the tryptic cleavage products from intact and permeabilized microsomes. It was shown that lysine-4 of microsomal glutathione transferase is accessible at the luminal surface of the endoplasmic reticulum, whereas lysine-41 faces the cytosol. These positions are separated by a hydrophobic stretch of 25 amino acids (positions 11–35) which comprises the likely membrane-spanning region. Reaction of cysteine-49 of the microsomal glutathione transferase with the charged sulfhydryl reagent DTNB (2,2′-dithiobis(5-nitrobenzoic acid))) in intact microsomes further supports the cytosolic localization of this portion of the polypeptide chain. The role of two other potential membrane-spanning/associated segments in the C-terminal half of the polypeptide chain was examined by investigating the association of the protein to the membrane after trypsin cleavage at lysine-41. Activity measurements and Western blot analysis after washing with high concentrations of salt, as well as after phase separation in Triton X-114, indicate that this portion of the protein also binds to the membrane. It is also shown that cleavage of the purified protein at Lys-41 and subsequent separation of the fragments obtained yields a functional C-terminal polypeptide with the expected length for the product encompassing positions 42–154. The location of the active site of microsomal glutathione transferase was investigated using radiolabelled glutathione together with a second substrate. Since isolated rat liver microsomes do not take up glutathione or release the glutathione conjugate into the lumen, it can be concluded that the active site of rat liver microsomal glutathione transferase faces the cytosolic side of the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号