首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Synapsin I is the most abundant brain phosphoprotein present in conventional synapses of the CNS. Knockout and rescue experiments have demonstrated that synapsin is essential for clustering of synaptic vesicles (SVs) at active zones and the organization of the reserve pool of SVs. However, in spite of intense efforts it remains largely unknown how exactly synapsin I performs this function. It has been proposed that synapsin I in its dephosphorylated state may tether SVs to actin filaments within the cluster from where SVs are released in response to activity-induced synapsin phosphorylation. Recent studies, however, have failed to detect actin filaments inside the vesicle cluster at resting central synapses. Instead, proteins with established functional roles in SV recycling have been found within this presynaptic compartment. Here we discuss potential alternative mechanisms of synapsin I-dependent SV clustering in the reserve pool.  相似文献   

2.
Deciphering the function of synaptic release sites is central to understanding neuronal communication. Here, we review studies of the lamprey giant reticulospinal synapse, a model that can be used to dissect synaptic vesicle trafficking at single release sites. The presynaptic axon is large and contains active zones that are spatially separated from each other. During activity, synaptic vesicle membrane is shuttled between the active zone and the periactive zone at which endocytosis occurs. Recent studies have shown that the periactive zone contains an actin-rich cytomatrix that expands during synaptic activity. This cytomatrix has been implicated in multiple functions that include (1) activity-dependent trafficking of proteins between the synaptic vesicle cluster and the periactive zone, (2) synaptic vesicle endocytosis, and (3) the movement of newly formed synaptic vesicles to the vesicle cluster. The actin cytomatrix thus provides a link between the active zone and the periactive zone; this link appears to be critical for sustained cycling of synaptic vesicles.This work was supported by Swedish Research Council grants (K2004-33X-11287-10A, LB; K2005-32X-13473-06A, OS).  相似文献   

3.
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.  相似文献   

4.
Phosphorylation of synapsin I by CaMKII has been reported to mobilize synaptic vesicles from the reserve pool. In the present study, the distributions of α-CaMKII and of synapsin I were compared in synaptic boutons of unstimulated and stimulated hippocampal neurons in culture by immunogold electron microscopy. CaMKII and synapsin I are located in separate domains in presynaptic terminals of unstimulated neurons. Label for α -CaMKII typically surrounds synaptic vesicle clusters and is absent from the inside of the cluster in control synapses. In contrast, intense labeling for synapsin I is found within the vesicle clusters. Following 2 minutes of depolarization in high K+, synaptic vesicles decluster and CaMKII label disperses and mingles with vesicles and synapsin I. These results indicate that, under resting conditions, CaMKII has limited access to the synapsin I in synaptic vesicle clusters. The peripheral distribution of CaMKII around vesicle clusters suggests that CaMKII-mediated declustering progresses from the periphery towards the center, with the depth of penetration into the synaptic vesicle cluster depending on the duration of CaMKII activation. Depolarization also promotes a significant increase in CaMKII immunolabel near the presynaptic active zone. Activity-induced redistribution of CaMKII leaves it in a position to facilitate phosphorylation of additional presynaptic proteins regulating neurotransmitter release.  相似文献   

5.
The actin cytoskeleton and neurotransmitter release: an overview   总被引:12,自引:0,他引:12  
Doussau F  Augustine GJ 《Biochimie》2000,82(4):353-363
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.  相似文献   

6.
We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse the synapse. Applying the phosphatase inhibitor okadaic acid causes vesicles to diffuse freely, moving 30 times faster than vesicles in control synapses. These results suggest that vesicles move sluggishly due to binding to elements of the synaptic cytomatrix and that this binding is altered by phosphorylation. Motivated by these results, a model is constructed consisting of diffusing vesicles that bind reversibly to the cytomatrix. This stick-and-diffuse model accounts for the fluorescence correlation spectroscopy and fluorescence recovery after photobleaching data, and also predicts the well-known exponential refilling of the readily releasable pool. Our measurements suggest that the movement of vesicles to the active zone is the rate-limiting step in this process.  相似文献   

7.
At a wide range of synapses, synaptic vesicles reside in distinct pools that respond to different stimuli. The recycling pool supplies the vesicles required for release in response to modest stimulation, whereas the reserve pool is mobilized only by strong stimulation. Multiple pathways have been proposed for the recycling of synaptic vesicles after exocytosis, but the relationship of these pathways to the different synaptic vesicle pools has remained unclear. Synaptic vesicle proteins have also been assumed to undergo recycling as a unit. However, emerging data indicate that differences in the association with distinct endocytic adaptors such as the heterotetrameric adaptor AP3 influence the trafficking of individual synaptic vesicle proteins, affecting the composition of synaptic vesicles and hence their functional characteristics. These observations might begin to account for differences in the properties of different vesicle pools.  相似文献   

8.
Synapsins as regulators of neurotransmitter release   总被引:19,自引:0,他引:19  
One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron-specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin-based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin-dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well-documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.  相似文献   

9.
Neurotransmitter release from presynaptic nerve terminals is restricted to specialized areas of the plasma membrane, so-called active zones. Active zones are characterized by a network of cytoplasmic scaffolding proteins involved in active zone generation and synaptic transmission. To analyze the modes of biogenesis of this cytomatrix, we asked how Bassoon and Piccolo, two prototypic active zone cytomatrix molecules, are delivered to nascent synapses. Although these proteins may be transported via vesicles, little is known about the importance of a vesicular pathway and about molecular determinants of cytomatrix molecule trafficking. We found that Bassoon and Piccolo co-localize with markers of the trans-Golgi network in cultured neurons. Impairing vesicle exit from the Golgi complex, either using brefeldin A, recombinant proteins, or a low temperature block, prevented transport of Bassoon out of the soma. Deleting a newly identified Golgi-binding region of Bassoon impaired subcellular targeting of recombinant Bassoon. Overexpressing this region to specifically block Golgi binding of the endogenous protein reduced the concentration of Bassoon at synapses. These results suggest that, during the period of bulk synaptogenesis, a primordial cytomatrix assembles in a trans-Golgi compartment. They further indicate that transport via Golgi-derived vesicles is essential for delivery of cytomatrix proteins to the synapse. Paradigmatically this establishes Golgi transit as an obligatory step for subcellular trafficking of distinct cytoplasmic scaffolding proteins.  相似文献   

10.
Readily releasable and reserve pools of synaptic vesicles play different roles in neurotransmission, and it is important to understand their recycling and interchange in mature central synapses. Using adult rat cerebrocortical synaptosomes, we have shown that 100 mosm hypertonic sucrose caused complete exocytosis of only the readily releasable pool (RRP) of synaptic vesicles containing glutamate or gamma-aminobutyric acid. Repetitive hypertonic stimulations revealed that this pool recycled (and reloaded the neurotransmitter from the cytosol) fully in <30 s and did so independently of the reserve pool. Multiple rounds of exocytosis could occur in the constant absence of extracellular Ca(2+). However, although each vesicle cycle includes a Ca(2+)-independent exocytotic step, some other stage(s) critically require an elevation of cytosolic [Ca(2+)], and this is supplied by intracellular stores. Repetitive recycling also requires energy, but not the activity of phosphatidylinositol 4-kinase, which maintains the normal level of phosphoinositides. By varying the length of hypertonic stimulations, we found that approximately 70% of the RRP vesicles fused completely with the plasmalemma during exocytosis and could then enter silent pools, probably outside active zones. The rest of the RRP vesicles underwent very fast local recycling (possibly by kiss-and-run) and did not leave active zones. Forcing the fully fused RRP vesicles into the silent pool enabled us to measure the transfer of reserve vesicles to the RRP and to show that this process requires intact phosphatidylinositol 4-kinase and actin microfilaments. Our findings also demonstrate that respective vesicle pools have similar characteristics and requirements in excitatory and inhibitory nerve terminals.  相似文献   

11.
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

13.
Synapsins are abundant nerve terminal proteins present at all synapses except for ribbon synapses, e.g. photoreceptor cell synapses. Multiple functions have been proposed for synapsins, including clustering of synaptic vesicles and regulation of synaptic vesicle exocytosis. To investigate the physiological functions of synapsin and to ascertain which domains of synapsin are involved in synaptic targeting in vivo, we expressed synapsin Ib and its N- and C-terminal domains in the photoreceptor cells of transgenic mice. In these cells synapsin Ib is targeted efficiently to synaptic vesicles but has no significant effect on the development, structure or physiology of the synapses. This suggests that synapsin I does not have dominant physiological or morphoregulatory functions at these synapses. Full-length synapsin Ib and the N-terminal domains of synapsin Ib but not its C-terminal domains are transported to synapses, revealing that the molecular apparatus for synaptic targeting of synapsins is also present in cells which form ribbon synapses that normally lack synapsins. This apparatus appears to utilize the conserved N-terminal domains that are shared between all synapsins.  相似文献   

14.
An understanding of how synaptic vesicles are recruited to and maintained at presynaptic compartments is required to discern the molecular mechanisms underlying presynaptic assembly and plasticity. We have previously demonstrated that cadherin–β-catenin complexes cluster synaptic vesicles at presynaptic sites. Here we show that scribble interacts with the cadherin–β-catenin complex to coordinate vesicle localization. Scribble and β-catenin are colocalized at synapses and can be coimmunoprecipitated from neuronal lysates, indicating an interaction between scribble and β-catenin at the synapse. Using an RNA interference approach, we demonstrate that scribble is important for the clustering of synaptic vesicles at synapses. Indeed, in scribble knockdown cells, there is a diffuse distribution of synaptic vesicles along the axon, and a deficit in vesicle recycling. Despite this, synapse number and the distribution of the presynaptic active zone protein, bassoon, remain unchanged. These effects largely phenocopy those observed after ablation of β-catenin. In addition, we show that loss of β-catenin disrupts scribble localization in primary neurons but that the localization of β-catenin is not dependent on scribble. Our data supports a model by which scribble functions downstream of β-catenin to cluster synaptic vesicles at developing synapses.  相似文献   

15.
Sara Y  Virmani T  Deák F  Liu X  Kavalali ET 《Neuron》2005,45(4):563-573
Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable pool of limited size. Interestingly, vesicles in this spontaneously labeled pool were more likely to re-fuse spontaneously compared to vesicles labeled with activity. We found that blocking vesicle refilling at rest selectively depleted neurotransmitter from spontaneously fusing vesicles without significantly altering evoked transmission. Furthermore, in the absence of the vesicle SNARE protein synaptobrevin (VAMP), activity-dependent and spontaneously recycling vesicles could mix, suggesting a role for synaptobrevin in the separation of the two pools. Taken together these results suggest that spontaneously recycling vesicles and activity-dependent recycling vesicles originate from distinct pools with limited cross-talk with each other.  相似文献   

16.
The distribution of the synaptic vesicle-associated phosphoprotein synapsin I after electrical stimulation of the frog neuromuscular junction was investigated by immunogold labeling and compared with the distribution of the integral synaptic vesicle protein synaptophysin. In resting terminals both proteins were localized exclusively on synaptic vesicles. In stimulated terminals they appeared also in the axolemma and its infoldings, which however exhibited a lower synapsin I/synaptophysin ratio with respect to synaptic vesicles at rest. The value of this ratio was intermediate in synaptic vesicles of stimulated terminals, and an increased synapsin I labeling of the cytomatrix was observed. These results indicate that synapsin I undergoes partial dissociation from and reassociation with synaptic vesicles, following physiological stimulation, and are consistent with the proposed modulatory role of the protein in neurotransmitter release.  相似文献   

17.
In our research on mouse diaphragm muscles the dynamic of neurotransmitter secretion and synaptic vesicles recycling (exo-endocytosis cycle) at the long-term rhythmic stimulation (20Hz) are explored using an intracellular microelectrode registration and a fluorescent microscopy. It have been shown, thate change of end plant potentials (EPP) amplitude at the rhythmic training occurs in three phases: initial transient decrease, long amplitude stabilization (1-2 min)--the plateau and secondary slow decrease. After 3 minute stimulations the EPP amplitude recovery observed during several seconds. Loading the synaptic vesicle by fluorescent endocytic dye FM 1-43 had shown that the rhythmic stimulation results to gradual (during 5-6 mines) fluorescence decrease in NT, indicating the synaptic vesicle exocytosis. The quantum analysis of the electrophysiological data and their comparison to the fluorescent researches date has allowed to assume, that mouse motor nerve terminals are characterized by high rate of endocytosis and fast synaptic vesicle reuse (average recycling time about 50 sec) that can provide effective maintenance of synaptic transmission at long high-frequency activity. Sizes of ready releasable and recycling synaptic vesicle pools are quantitatively determined. It is assumed, that vesicle recycling occurs on a short fast way to inclusion in recycling pool. So, in the stimulation protocol that were used the synaptic vesicles from reserve pool remain unused. Thus in our conditions recycling pool vesicles cycle repeatedly without reserve pool release.  相似文献   

18.
Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20–350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes.  相似文献   

19.
Littleton JT 《Neuron》2006,51(2):149-151
The question of how synapses maintain an active recycling pool of synaptic vesicles to support high-frequency synaptic transmission has been a perplexing and often controversial problem. In this issue of Neuron, Fernandez-Alfonso et al. present data indicating that at least two synaptic vesicle proteins, synaptotagmin 1 and VAMP-2, are present in a large pool on the synaptic and axonal plasma membrane and can interchange with recently exocytosed proteins. These findings suggest that a plasma membrane pool of synaptic vesicle proteins provides a reservoir that can facilitate rapid endocytosis.  相似文献   

20.
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号