首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein.  相似文献   

2.
Nuclear protein import can be separated into two distinct steps: binding to the nuclear pore complex followed by translocation to the nuclear interior. A previously identified nuclear location sequence (NLS) receptor and a 97-kD protein purified from bovine erythrocytes reconstitute the binding step in a permeabilized cell assay. Binding to the envelope is specific for a functional SV-40 large T antigen NLS and is not ATP or temperature dependent. Modification of p97 with N- ethylmaleimide (NEM) decreases binding to the pore, but interestingly, NEM treatment of the NLS receptor does not. Nuclear envelope binding is inhibited by wheat germ agglutinin suggesting a possible mechanism for the inhibition of transport by the lectin.  相似文献   

3.
K Weis  U Ryder    A I Lamond 《The EMBO journal》1996,15(8):1818-1825
Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery.  相似文献   

4.
Abnormal p53 cellular localization has been considered to be one of the mechanisms that could inactivate p53 function. To understand the regulation of p53 cellular trafficking, we have previously identified two p53 domains involved in its localization. A basic domain, Lys(305)-Arg(306), is required for p53 nuclear import, and a carboxyl-terminal domain, namely the cytoplasmic sequestration domain (CSD) from residues 326-355, could block the nuclear import of Lys(305) or Arg(306) mutated p53. To characterize further the function of these two domains, we demonstrate in this report that the previously described major nuclear localization signal works together with Lys(305)-Arg(306) to form a bipartite and functional nuclear localization sequence (NLS) for p53 nuclear import. The CSD could block the binding of p53 to the NLS receptor, importin alpha, and reduce the efficiency of p53 nuclear import in MCF-7, H1299, and Saos-2 cells. The blocking effect of the CSD is not due to the enhancement of nuclear export or oligomerization of the p53. These results indicate that the CSD can regulate p53 nuclear import by controlling access of the NLS to importin alpha binding.  相似文献   

5.
MTR10, previously shown to be involved in mRNA export, was found in a synthetic lethal relationship with nucleoporin NUP85. Green fluorescent protein (GFP)-tagged Mtr10p localizes preferentially inside the nucleus, but a nuclear pore and cytoplasmic distribution is also evident. Purified Mtr10p forms a complex with Npl3p, an RNA-binding protein that shuttles in and out of the nucleus. In mtr10 mutants, nuclear uptake of Npl3p is strongly impaired at the restrictive temperature, while import of a classic nuclear localization signal (NLS)-containing protein is not. Accordingly, the NLS within Npl3p is extended and consists of the RGG box plus a short and non-repetitive C-terminal tail. Mtr10p interacts in vitro with Gsp1p-GTP, but with low affinity. Interestingly, Npl3p dissociates from Mtr10p only by incubation with Ran-GTP plus RNA. This suggests that Npl3p follows a distinct nuclear import pathway and that intranuclear release from its specific import receptor Mtr10p requires the cooperative action of both Ran-GTP and newly synthesized mRNA.  相似文献   

6.
Mediated import of proteins into the nucleus involves multiple cytosolic factors, including the small GTPase Ran. Whether Ran functions by interacting with other cytosolic proteins or components of the nuclear pore complex has been unclear. Furthermore, the precise transport step where Ran acts has not been determined. To address these questions, we have analyzed the binding interactions of Ran using permeabilized cells and isolated nuclear envelopes. By light and electron microscope immunolocalization, we have found that Ran accumulates specifically at the cytoplasmic surface of the nuclear pore complex when nuclear import in permeabilized cells is inhibited by nonhydrolyzable analogs of GTP. Ran associates with a peripheral pore complex region that is similar to the area where transport ligands accumulate by depletion of ATP, which arrests an early step of transport. Binding studies with isolated nuclear envelopes in the absence of added cytosol indicate that Ran-GTP directly interacts with a pore complex protein. Using blot overlay techniques, we detected a single prominent polypeptide of isolated nuclear envelopes that binds Ran-GTP. This corresponds to the 358-kD protein RanBP2, a Ran binding pore complex protein recently identified by two-hybrid screening. Thus, RanBP2 is likely to constitute the Ran-GTP-binding site detected at the cytoplasmic periphery of the pore complex. These data support a model in which initial ligand binding to the nuclear pore complex occurs at or near RanBP2, and that hydrolysis of GTP by Ran at this site serves to define commitment to the nuclear import pathway.  相似文献   

7.
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.  相似文献   

8.
The transport of proteins into the nucleus is a receptor-mediated process that is likely to involve between 50-100 gene products, including many that comprise the nuclear pore complex. We have developed an assay in Saccharomyces cerevisiae for the nuclear transport of green fluorescent protein fused to the SV-40 large T antigen nuclear localization signal (NLS-GFP). This assay allows the measurement of relative NLS-GFP nuclear import rates in wild-type and mutant cells under various physiological conditions. Probably the best understood component of the nuclear transport apparatus is Srp1p, the NLS receptor, which binds NLS-cargo in the cytoplasm and accompanies it into the nucleus. When compared to SRP1+ cells, NLS-GFP import rates in temperature-sensitive srp1-31 cells were slower and showed a lower temperature optimum. The in vivo transport defect of the srp1-31 cells was correlated with the purified protein's thermal sensitivity, as assayed by in vitro NLS peptide binding. We show that the kinetics of NLS-directed nuclear transport in wild-type cells is stimulated by the elevated expression of SSA1, which encodes a cytoplasmic heat shock protein 70 (Hsp70). Elevated Hsp70 levels are sufficient to suppress the NLS-GFP import defects in srp1-31 and nup82-3 cells. NUP82 encodes a protein that functions within the nuclear pore complex subsequent to docking. These results provide genetic evidence that Hsp70 acts during both targeting and translocation phases of nuclear transport, possibly as a molecular chaperone to promote the formation and stability of the Srp1p-NLS-cargo complex.  相似文献   

9.
The full range of sequences that constitute nuclear localization signals (NLSs) remains to be established. Even though the sequence of the classical NLS contains polybasic residues that are recognized by importin-alpha, this import receptor can also bind cargo that contains no recognizable signal, such as STAT1. The situation is further complicated by the existence of six mammalian importin-alpha family members. We report the identification of an unusual type of NLS in human Ran binding protein 3 (RanBP3) that binds preferentially to importin-alpha3. RanBP3 contains a variant Ran binding domain most similar to that found in the yeast protein Yrb2p. Anti-RanBP3 immunofluorescence is predominantly nuclear. Microinjection of glutathione S-transferase-green fluorescent protein-RanBP3 fusions demonstrated that a region at the N terminus is essential and sufficient for nuclear localization. Deletion analysis further mapped the signal sequence to residues 40 to 57. This signal resembles the NLSs of c-Myc and Pho4p. However, several residues essential for import via the c-Myc NLS are unnecessary in the RanBP3 NLS. RanBP3 NLS-mediated import was blocked by competitive inhibitors of importin-alpha or importin-beta or by the absence of importin-alpha. Binding assays using recombinant importin-alpha1, -alpha3, -alpha4, -alpha5, and -alpha7 revealed a preferential interaction of the RanBP3 NLS with importin-alpha3 and -alpha4, in contrast to the simian virus 40 T-antigen NLS, which interacted to similar extents with all of the isoforms. Nuclear import of the RanBP3 NLS was most efficient in the presence of importin-alpha3. These results demonstrate that members of the importin-alpha family possess distinct preferences for certain NLS sequences and that the NLS consensus sequence is broader than was hitherto suspected.  相似文献   

10.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

11.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

12.
In spite of recent efforts to elucidate the nuclear import pathway of the human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), its exact route as well as the domains that mediate its import are still unknown. Here, we show that a synthetic peptide bearing the amino acid residues 161-173 of the HIV-1 IN is able to mediate active import of covalently attached bovine serum albumin molecules into nuclei of permeabilized cells and therefore was designated as nuclear localization signal-IN (NLS(IN)). A peptide bearing residues 161-173 in the reversed order showed low karyophilic properties. Active nuclear import was demonstrated by using fluorescence microscopy and a quantitative ELISA-based assay system. Nuclear import was blocked by addition of the NLS(IN) peptide, as well as by a peptide bearing the NLS of the simian virus 40 T-antigen (NLS-SV40). The NLS(IN) peptide partially inhibited nuclear import mediated by the full-length recombinant HIV-1 IN protein, indicating that the sequence of the NLS(IN) is involved in mediating nuclear import of the IN protein. The NLS(IN) as well as the full-length IN protein interacted specifically with importin alpha, binding of which was blocked by the NLS(IN) peptide itself as well as by the NLS-SV40.  相似文献   

13.
The correct assembly of chromatin is necessary for the maintenance of genomic stability in eukaryotic cells. A critical step in the assembly of new chromatin is the cell cycle-regulated synthesis and nuclear import of core histones. Here we demonstrate that the nuclear import pathway of histones H3 and H4 is mediated by at least two karyopherins/importins, Kap123p and Kap121p. Cytosolic H4 is found associated with Kap123p and H3. Kap121p is also present in the H4-PrA-associated fractions, albeit in lesser amounts than Kap123p, suggesting that this Kap serves as an additional import receptor. We further demonstrate that cytosolic Kap123p is associated with acetylated H3 and H4. H3 and H4 each contain a nuclear localization signal (NLS) in their amino-terminal domains. These amino-terminal domains were found to be essential for the nuclear accumulation of H3 and H4-green fluorescent protein reporters. Each NLS mediated direct binding to Kap123p and Kap121p, and decreased nuclear accumulation of H3 and H4 NLS-green fluorescent protein reporters was observed in specific kap mutant strains. H3 and H4 are the first histones to be assembled onto DNA, and these results show that their import is mediated by at least two import pathways.  相似文献   

14.
RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of ~36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.  相似文献   

15.
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.  相似文献   

16.
17.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

18.
K Weis  C Dingwall    A I Lamond 《The EMBO journal》1996,15(24):7120-7128
The small nuclear GTP binding protein Ran is required for transport of nuclear proteins through the nuclear pore complex (NPC). Although it is known that GTP hydrolysis by Ran is essential for this reaction, it has been unclear whether additional energy-consuming steps are also required. To uncouple the energy requirements for Ran from other nucleoside triphosphatases, we constructed a mutant derivative of Ran that has an altered nucleotide specificity from GTP to xanthosine 5' triphosphate. Using this Ran mutant, we demonstrate that nucleotide hydrolysis by Ran is sufficient to promote efficient nuclear protein import in vitro. Under these conditions, protein import could no longer be inhibited with non-hydrolysable nucleotide analogues, indicating that no Ran-independent energy-requiring steps are essential for the protein translocation reaction through the NPC. We further provide evidence that nuclear protein import requires Ran in the GDP form in the cytoplasm. This suggests that a coordinated exchange reaction from Ran-GDP to Ran-GTP at the pore is necessary for translocation into the nucleus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号