首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.  相似文献   

2.
Assembly of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein on budding virus particles is important for efficient infection of target cells. In infected cells, lipid rafts have been proposed to form platforms for virus assembly and budding. Gag precursors partly associate with detergent-resistant membranes (DRMs) that are believed to represent lipid rafts. The cytoplasmic domain of the envelope gp41 usually carries palmitate groups that were also reported to confer DRM association. Gag precursors confer budding and carry envelope glycoproteins onto virions via specific Gag-envelope interactions. Thus, specific mutations in both the matrix domain of the Gag precursor and gp41 cytoplasmic domain abrogate envelope incorporation onto virions. Here, we show that HIV-1 envelope association with DRMs is directly influenced by its interaction with Gag. Thus, in the absence of Gag, envelope fails to associate with DRMs. A mutation in the p17 matrix (L30E) domain in Gag (Gag L30E) that abrogates envelope incorporation onto virions also eliminated envelope association with DRMs in 293T cells and in the T-cell line, MOLT 4. These observations are consistent with a requirement for an Env-Gag interaction for raft association and subsequent assembly onto virions. In addition to this observation, we found that mutations in the gp41 cytoplasmic domain that abrogated envelope incorporation onto virions and impaired infectivity of cell-free virus also eliminated envelope association with DRMs. On the basis of these observations, we propose that Gag-envelope interaction is essential for efficient envelope association with DRMs, which in turn is essential for envelope budding and assembly onto virus particles.  相似文献   

3.
Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.  相似文献   

4.
The incorporation of envelope (Env) glycoproteins into virions is an essential step in the retroviral replication cycle. Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), encode Env glycoproteins with unusually long cytoplasmic tails, the functions of which have not been fully elucidated. In this study, we examine the effects on virus replication of a number of mutations in a helical motif (alpha-helix 2) located near the center of the HIV-1 gp41 cytoplasmic tail. We find that, in T-cell lines, small deletions in this domain disrupt the incorporation of Env glycoproteins into virions and markedly impair virus infectivity. Through the analysis of viral revertants, we demonstrate that a single amino acid change (34VI) in the matrix domain of Gag reverses the Env incorporation and infectivity defect imposed by a small deletion near the C terminus of alpha-helix 2. These results provide genetic evidence, in the context of infected T cells, for an interaction between HIV-1 matrix and the gp41 cytoplasmic tail and identify domains of both proteins involved in this putative interaction.  相似文献   

5.
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.  相似文献   

6.
Jiang J  Aiken C 《Journal of virology》2007,81(18):9999-10008
Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode fusion glycoproteins with long cytoplasmic tails (CTs). We previously reported that immature HIV-1 particles are inhibited for fusion with target cells by a mechanism requiring the 152-amino-acid CT of gp41. The gp41 CT was also shown to mediate the detergent-resistant association of the HIV-1 envelope glycoprotein complex with immature HIV-1 particles, indicating that the gp41 CT forms a stable complex with Gag in immature virions. In the present study, we analyzed the effects of progressive truncations and point mutations in the gp41 CT on the fusion of mature and immature HIV-1 particles with target cells. We also determined the effects of these mutations on the detergent-resistant association of gp41 with immature HIV-1 particles. Removal of the C-terminal 28 amino acids relieved the dependence of HIV-1 fusion on maturation. However, a mutant Env protein lacking this region remained associated with immature HIV-1 particles treated with nonionic detergent. Further mutational analysis of the C-terminal region of gp41 revealed two specific sequences required for maturation-dependent HIV-1 fusion. Collectively, our results demonstrate that the extreme C terminus of gp41 plays a key role in coupling HIV-1 fusion competence to virion maturation. They further indicate that the stable association of gp41 with Gag in immature virions is not sufficient for inhibition of immature HIV-1 particle fusion.  相似文献   

7.
The mechanisms involved in the incorporation of viral glycoproteins into virions are incompletely understood. For retroviruses, incorporation may involve interactions between the Gag proteins of these viruses and the cytoplasmic domains of the relevant envelope (Env) glycoproteins. Recent studies have identified within the cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) Env protein a tyrosine-containing internalization motif similar to those found in the cytoplasmic domains of certain cell surface proteins that undergo rapid constitutive endocytosis in clathrin-coated pits. Given that surface expression of the HIV-1 Env protein is essential for the production of infectious virus, the presence of this internalization motif is surprising. We show here that in contrast to the rapid rate of Env protein internalization observed in cells expressing the Env protein in the absence of other HIV-1 proteins, the rate of internalization of Env protein from the surfaces of HIV-1-infected cells is extremely slow. The presence of the Pr55gag precursor protein is necessary and sufficient for inhibition of Env protein internalization, while a mutant Pr55-gag that is incapable of mediating Env incorporation into virions is also unable to inhibit endocytosis of the Env protein. The failure of the Env protein to undergo endocytosis from the surface of an HIV-1-infected cell may reflect the fact that the proposed interaction of the matrix domain of the Gag protein with Env during assembly prevents the interaction of Env with host adaptin molecules that recruit plasma membrane molecules such as the transferrin receptor into clathrin-coated pits. When the normal ratio of Gag and Env proteins in the infected cells is altered by overexpression of Env protein, this mechanism allows removal of excess Env protein from the cell surface. Taken together, these results suggest that a highly conserved system to reduce surface levels of the Env protein functions to remove Env protein that is not associated with Gag and that is therefore not destined for incorporation into virions. This mechanism for the regulation of surface levels of Env protein may protect infected cells from Env-dependent cytopathic effects or Env-specific immune responses.  相似文献   

8.
Retrovirus particles are not infectious until they undergo proteolytic maturation to form a functional core. Here we report a link between human immunodeficiency virus type 1 (HIV-1) core maturation and the ability of the virus to fuse with target cells. Using a recently developed reporter assay of HIV-1 virus-cell fusion, we show that immature HIV-1 particles are 5- to 10-fold less active for fusion with target cells than are mature virions. The fusion of mature and immature virions was rendered equivalent by truncating the gp41 cytoplasmic domain or by pseudotyping viruses with the glycoprotein of vesicular stomatitis virus. An analysis of a panel of mutants containing mutated cleavage sites indicated that HIV-1 fusion competence is activated by the cleavage of Gag at any site between the MA and NC segments and not as an indirect consequence of an altered core structure. These results suggest a mechanism by which binding of the gp41 cytoplasmic tail to Gag within immature HIV-1 particles inhibits Env conformational changes on the surface of the virion that are required for membrane fusion. This "inside-out" regulation of HIV-1 fusion could play an important role in the virus life cycle by preventing the entry of immature, noninfectious particles.  相似文献   

9.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

10.
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER.  相似文献   

11.
We recently demonstrated that a single amino acid substitution in matrix residue 12 (12LE) or 30 (30LE) blocks the incorporation of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into virions and that this block can be reversed by pseudotyping with heterologous retroviral envelope glycoproteins with short cytoplasmic tails or by truncating the cytoplasmic tail of HIV-1 transmembrane glycoprotein gp41 by 104 or 144 amino acids. In this study, we mapped the domain of the gp41 cytoplasmic tail responsible for the block to incorporation into virions by introducing a series of eight truncation mutations that eliminated 23 to 93 amino acids from the C terminus of gp41. We found that incorporation into virions of a HIV-1 envelope glycoprotein with a deletion of 23, 30, 51, or 56 residues from the C terminus of gp41 is specifically blocked by the 12LE matrix mutation, whereas truncations of greater than 93 amino acids reverse this defect. To elucidate the role of matrix residue 12 in this process, we introduced a number of additional single amino acid substitutions at matrix positions 12 and 13. Charged substitutions at residue 12 blocked envelope incorporation and virus infectivity, whereas more subtle amino acid substitutions resulted in a spectrum of envelope incorporation defects. To characterize further the role of matrix in envelope incorporation into virions, we obtained and analyzed second-site revertants to two different matrix residue 12 mutations. A Val-->Ile substition at matrix amino acid 34 compensated for the effects of both amino acid 12 mutations, suggesting that matrix residues 12 and 34 interact during the incorporation of HIV-1 envelope glycoproteins into nascent virions.  相似文献   

12.
Productive, spreading infection of peripheral blood lymphocytes (PBL) with human immunodeficiency virus type 1 (HIV-1) requires the viral protein Vif. To study the requirement for vif in this system, we infected PBL with a phenotypically complemented HIV-1 clone mutated in vif. Progeny virus was produced which was noninfectious in PBL but replicated in SupT1 cells. Analysis of metabolically labeled proteins of sedimentable extracellular particles made in PBL by radioimmunoprecipitation with either serum from a patient with AIDS or a monoclonal antibody reactive with HIV-1 Gag proteins revealed that vif-negative but not wild-type particles carry higher levels of p55, p41, and p38 Gag-specific proteins compared with those of p24. Similar results were obtained with sucrose-purified virions. Our data indicate that vif plays a role in Gag protein processing or in incorporation of processed Gag products into mature virions. The presence of unprocessed precursor Gag polyprotein (Pr55gag) and other Gag processing intermediates in PBL-derived vif-negative extracellular particles may contribute to the reduced infectivity of this virus.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) envelope comprises a surface gp120 and a transmembrane gp41. The cytoplasmic domain of gp41 contains cysteine residues (C764 and C837) which are targets for palmitoylation and were reported to be required for envelope association with lipid rafts and assembly on budding virions (I. Rousso, M. B. Mixon, B. K. Chen, and P. S. Kim, Proc. Natl. Acad. Sci. USA 97:13523-13525, 2000). Several infectious HIV-1 clones contain envelopes that have no gp41 cytoplasmic cysteines. Since no other gp41 amino acid is a target for palmitoylation, these clones imply that palmitoylation is not essential for envelope trafficking and assembly. Here, we show that HIV-1 envelope mutants that lack gp41 cytoplasmic cysteines are excluded from light lipid rafts. Envelopes that contained residues with bulky hydrophobic side chains instead of cysteines retained their association with heavy rafts and were nearly fully functional for incorporation into virions and infectivity. Substitution of cysteines with alanines or serines eliminated raft association and more severely reduced envelope incorporation onto virions and their infectivity. Nevertheless, the A764/A837 mutant envelope retained nearly 40% infectivity compared to the wild type, even though this envelope was excluded from lipid rafts. Our results demonstrate that gp41 cytoplasmic cysteines that are targets for palmitoylation and are required for envelope trafficking to classical lipid rafts are not essential for HIV-1 replication.  相似文献   

14.
The human immunodeficiency virus (HIV) envelope (Env) protein is incorporated into HIV virions or virus-like particles (VLPs) at very low levels compared to the glycoproteins of most other enveloped viruses. To test factors that influence HIV Env particle incorporation, we generated a series of chimeric gene constructs in which the coding sequences for the signal peptide (SP), transmembrane (TM), and cytoplasmic tail (CT) domains of HIV-1 Env were replaced with those of other viral or cellular proteins individually or in combination. All constructs tested were derived from HIV type 1 (HIV-1) Con-S DeltaCFI gp145, which itself was found to be incorporated into VLPs much more efficiently than full-length Con-S Env. Substitution of the SP from the honeybee protein mellitin resulted in threefold-higher chimeric HIV-1 Env expression levels on insect cell surfaces and an increase of Env incorporation into VLPs. Substitution of the HIV TM-CT with sequences derived from the mouse mammary tumor virus (MMTV) envelope glycoprotein, influenza virus hemagglutinin, or baculovirus (BV) gp64, but not from Lassa fever virus glycoprotein, was found to enhance Env incorporation into VLPs. The highest level of Env incorporation into VLPs was observed in chimeric constructs containing the MMTV and BV gp64 TM-CT domains in which the Gag/Env molar ratios were estimated to be 4:1 and 5:1, respectively, compared to a 56:1 ratio for full-length Con-S gp160. Electron microscopy revealed that VLPs with chimeric HIV Env were similar to HIV-1 virions in morphology and size and contained a prominent layer of Env spikes on their surfaces. HIV Env specific monoclonal antibody binding results showed that chimeric Env-containing VLPs retained conserved epitopes and underwent conformational changes upon CD4 binding.  相似文献   

15.
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  相似文献   

16.
The motifs involved in the various functions of the human immunodeficiency virus type 1 (HIV-1) gp41 cytoplasmic tail (CT), particularly those related to the intracellular trafficking and assembly of envelope glycoproteins (Env) onto core particles, have generally been assessed with a restricted panel of T-cell laboratory-adapted virus strains. Here, we investigated gp41 CT sequences derived from individuals infected with HIV-1 viruses of various subtypes. We identified four patients harboring HIV variants with a natural polymorphism in the membrane-proximal tyrosine-based signal Y(712)SPL or the Y(802)W(803) diaromatic motif, which are two major determinants of Env intracellular trafficking. Confocal microscopy showed that the intracellular distribution of Env with a mutation in the tyrosine or diaromatic motif differed from that of Env with no mutation in these motifs. Surprisingly, the gp41 CTs of the primary viruses also had differential effects on the intracellular distribution of Env, independently of mutations in the tyrosine or diaromatic motifs, suggesting the involvement of additional determinants. Furthermore, analyses of virus replication kinetics indicated that the effects of mutations in the tyrosine or diaromatic motifs on viral replication depended on the gp41 CT context. These effects were at least partly due to differences in the efficiency of Env incorporation into virions. Thus, polymorphisms in primary HIV-1 gp41 CTs at the quasispecies or subtype level can influence the intracellular distribution of Env, its incorporation into virions, and viral replication capacity.  相似文献   

17.
Growth kinetics in lymphocytic H9 and M8166 cells of two mutants of human immunodeficiency virus type 1 (HIV-1) with deleted gp41 cytoplasmic tails were examined. While the mutant viruses designated CTdel-44 and CTdel-144 were able to grow in M8166 cells, they were unable to grow in H9 cells. Transfection and single-round infectivity assays demonstrated that they are defective in the early phase of viral replication in H9 cells. Analysis of the mutant virions revealed drastically reduced incorporation of Env gp120 (compared with the incorporation of wild-type virions) in H9 cells but normal incorporation in M8166 cells. These results indicate that the HIV-1 cytoplasmic tail of gp41 determines virus infectivity in a cell-dependent manner by affecting incorporation of Env into virions and suggest the involvement of a host cell factor(s) in the Env incorporation.  相似文献   

18.
The role of the cytoplasmic domain of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in virus replication was investigated. Deletion of residues 840 to 856 at the carboxyl terminus of gp41 reduced the efficiency of virus entry during an early step in the virus life cycle between CD4 binding and formation of the DNA provirus without affecting envelope glycoprotein synthesis, processing, or syncytium-forming ability. Deletion of residues amino terminal to residue 846 was associated with decreased stability of envelope glycoproteins made in COS-1 cells, but this phenotype was cell type dependent. The cytoplasmic domain of gp41 was not required for the incorporation of the HIV-1 envelope glycoproteins into virions. These results suggest that the carboxyl terminus of the gp41 cytoplasmic domain plays a role in HIV-1 entry other than receptor binding or membrane fusion. The cytoplasmic domain of gp41 also affects the stability of the envelope glycoprotein in some cell types.  相似文献   

19.
The interactions of HIV-1 Env (gp120-gp41) with CD4 and coreceptors trigger a barrage of conformational changes in Env that drive the membrane fusion process. Various regions of gp41 have profound effects on HIV entry and budding. However, the precise interactions between gp41 and the membrane have not been elucidated. To examine portions of membrane proteins that are embedded in membrane lipids, we have studied photoinduced chemical reactions in membranes using the lipid bilayer specific probe iodonaphthyl azide (INA). Here we show that in addition to the transmembrane anchor, amphipatic sequences in the cytoplasmic tail (CT) of HIV-1 gp41 are labeled by INA. INA labeling of the HIV-1 gp41 CT was similar whether wild-type or a mutant HIV-1 was used with uncleaved p55 Gag, which does not allow entry. These results shed light on the disposition of the HIV-1 gp41 CT with respect to the membrane. Moreover, our data have general implications for topology of membrane proteins and their in situ interactions with the lipid bilayer.  相似文献   

20.
The Gag polyprotein of human immunodeficiency virus (HIV) (Pr55Gag) contains sufficient information to direct particle assembly events when expressed within tissue culture cells. HIV Gag proteins normally form particles at a plasma membrane assembly site, in a manner analogous to that of the type C avian and mammalian leukemia/sarcoma viruses. It has not previously been demonstrated that immature HIV capsids can form without budding through an intact cellular membrane. In this study, a rabbit reticulocyte lysate translation reaction was used to recreate HIV capsid formation in vitro. Production of HIV-1 Pr55Gag and of a matrix-deleted Gag construct resulted in the formation of a subset of Gag protein structures with an equilibrium density of 1.15 g/ml. Gel filtration chromatography revealed these Gag protein structures to be larger than 2 x 10(6) Da, consistent with the formation of large multimers or capsids. These Gag protein structures were protease sensitive in the absence of detergent, indicating that they did not contain a complete lipid envelope. Spherical structures were detected by electron microscopy within the reticulocyte lysate reaction mixtures and appeared essentially identical to immature HIV capsids or retrovirus-like particles. These results demonstrate that the HIV Gag protein is capable of producing immature capsids in a cell-free reaction and that such capsids lack a complete lipid envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号