首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
3.
4.
5.
6.
【目的】阐明霍乱弧菌ToxR蛋白功能调控的分子机制。【方法】利用巯基捕获(thiol-trapping)的方法分析DsbA蛋白对ToxR周质空间结构域半胱氨酸残基的氧化作用;采用定点突变的方法构建ToxR半胱氨酸突变株(ToxR_(C236/293S));利用荧光素酶基因作为报告基因分析ToxR野生型(ToxR_(wt))和半胱氨酸突变体(ToxR_(C236/293S))诱导下游基因表达的活性;通过细菌双杂交系统分析ToxR_(wt)和ToxR_(C236/293S)蛋白之间、ToxR与ToxS之间以及ToxS之间的相互作用。【结果】ToxR周质空间结构域半胱氨酸残基确实可以被DsbA蛋白氧化,且当ToxR与ToxS共表达时,ToxR诱导ctxAB转录表达的活性显著增强,且在dsbA基因缺失突变株中ToxR诱导ctxAB转录表达的活性更高;成功构建株霍乱弧菌ToxR半胱氨酸突变株(ToxR_(C236/293S)),在没有ToxS存在的条件下,ToxR_(C236/293S)诱导毒力基因表达的活性与ToxRwt相当;细菌双杂交系统分析发现当ToxR与ToxS共转录表达时,ToxS极大增强ToxR蛋白之间的互作;在dsbA基因缺失突变株中,ToxS之间的相互作用显著增强。【结论】ToxR蛋白本身的氧还状态对其诱导毒力基因表达的活性没有影响;ToxS通过增强ToxR形成二聚体的能力从而增强其诱导毒力基因的表达,而DsbA对ToxS蛋白之间的相互作用具有抑制作用,DsbA通过影响ToxS的蛋白互作从而影响ToxR蛋白的功能。本文为进一步阐明霍乱弧菌毒力基因表达调控的分子机制提供重要的理论依据。  相似文献   

7.
8.
9.
The ToxR protein is a transmembrane protein that regulates the expression of several virulence factors of Vibrio cholerae. Previous analysis of fusion proteins between ToxR and alkaline phosphatase (ToxR-PhoA) suggested that ToxR was active as a dimer. In order to determine whether dimerization of the ToxR periplasmic domain was essential for activity, this domain was replaced by monomeric and dimeric protein domains. Surprisingly, PhoA (dimeric), β-lactamase (monomeric, ToxR–Bla), or the leucine zipper of GCN4 (dimeric, ToxR-GCN4-M) could substitute functionally for the ToxR periplasmic domain. ToxR-GCN4 fusion proteins, in which the ToxR trans-membrane domain was eliminated (ToxR-GCN4-C), were inactive, but an additional fusion protein that contained a heterologous membrane-spanning domain retained activity. Strains containing each of these ToxR fusion proteins were analysed for in vivo colonization properties and response to in vitro growth conditions that are known to affect expression of the ToxR regulon. Strains containing ToxR-GCN4-M and ToxR-Bla responded like wild-type strains to in vitro growth conditions. In the infant-mouse colonization model, strains containing ToxR fusion proteins were all deficient in colonization relative to strains containing wild-type ToxR, and strains containing monomeric ToxR-Bla were most severely outcompeted. These results suggest that, under in vitro conditions, ToxR does not require a dimerized periplasmic domain, but that, under in vivo conditions, the correct conformation of the ToxR periplasmic domain may be more important for function.  相似文献   

10.
11.
12.
13.
Two of the primary virulence regulators of Vibrio cholerae, ToxR and TcpP, function together with cognate effector proteins. ToxR undergoes regulated intramembrane proteolysis (RIP) during late stationary phase in response to nutrient limitation at alkaline pH; however, the specific function of its cognate ToxS remains unresolved. In this work, we found that ToxR rapidly becomes undetectable in a ΔtoxS mutant when cultures are exposed to either starvation conditions or after alkaline pH shock individually. A ΔtoxS mutant enters into a dormant state associated with the proteolysis of ToxR at a faster rate than wild‐type, closely resembling a ΔtoxR mutant. Using a mutant with a periplasmic substitution in ToxS, we found that the proteases DegS and DegP function additively with VesC and a novel protease, TapA, to degrade ToxR in the mutant. Overall, the results shown here reveal a role for ToxS in the stabilization of ToxR by protecting the virulence regulator from premature proteolysis.  相似文献   

14.
15.
16.
17.
ToxR, a transmembrane regulatory protein, has been shown to respond to environmental stimuli. To better understand how the aquatic bacterium Vibrio anguillarum, a fish pathogen, responds to environmental signals that may be necessary for survival in the aquatic and fish environment, toxR and toxS from V. anguillarum serotype O1 were cloned. The deduced protein sequences were 59 and 67% identical to the Vibrio cholerae ToxR and ToxS proteins, respectively. Deletion mutations were made in each gene and functional analyses were done. Virulence analyses using a rainbow trout model showed that only the toxR mutant was slightly decreased in virulence, indicating that ToxR is not a major regulator of virulence factors. The toxR mutant but not the toxS mutant was 20% less motile than the wild type. Like many regulatory proteins, ToxR was shown to negatively regulate its own expression. Outer membrane protein (OMP) preparations from both mutants indicated that ToxR and ToxS positively regulate a 38-kDa OMP. The 38-kDa OMP was shown to be a major OMP, which cross-reacted with an antiserum to OmpU, an outer membrane porin from V. cholerae, and which has an amino terminus 75% identical to that of OmpU. ToxR and to a lesser extent ToxS enhanced resistance to bile. Bile in the growth medium increased expression of the 38-kDa OMP but did not affect expression of ToxR. Interestingly, a toxR mutant forms a better biofilm on a glass surface than the wild type, suggesting a new role for ToxR in the response to environmental stimuli.  相似文献   

18.
In an attempt to dissect the virulence regulatory mechanism in Vibrio vulnificus, we tried to identify the V. cholerae transmembrane virulence regulator toxRS (toxRS(Vc)) homologs in V. vulnificus. By comparing the sequences of toxRS of V. cholerae and V. parahaemolyticus (toxRS(Vp)), we designed a degenerate primer set targeting well-conserved sequences. Using the PCR product as an authentic probe for Southern blot hybridization, a 1.6-kb BglII-HindIII fragment and a 1.2-kb HindIII fragment containing two complete open reading frames and one partial open reading frame attributable to toxR(Vv), toxS(Vv), and htpG(Vv) were cloned. ToxR(Vv) shared 55.0 and 63.0% sequence homology with ToxR(Vc) and ToxR(Vp), respectively. ToxS(Vv) was 71.5 and 65.7% homologous to ToxS(Vc) and ToxS(Vp), respectively. The amino acid sequences of ToxRS(Vv) showed transmembrane and activity domains similar to those observed in ToxRS(Vc) and ToxRS(Vp). Western blot analysis proved the expression of ToxR(Vv) in V. vulnificus. ToxRS(Vv) enhanced, in an Escherichia coli background, the expression of the V. vulnificus hemolysin gene (vvhA) fivefold. ToxRS(Vv) also activated the ToxR(Vc)-regulated ctx promoter incorporated into an E. coli chromosome. A toxR(Vv) null mutation decreased hemolysin production. The defect in hemolysin production could be complemented by a plasmid harboring the wild-type gene. The toxR(Vv) mutation also showed a reversed outer membrane protein expression profile in comparison to the isogenic wild-type strain. These results demonstrate that ToxR(Vv) may regulate the virulence expression of V. vulnificus.  相似文献   

19.
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.  相似文献   

20.
The 17 kb kps gene cluster of Escherichia coli K1, which encodes the information required for synthesis, assembly and translocation of the polysialic acid capsule of E. coli K1, is divided into three functional regions. Region 3 contains two genes, kpsM and kpsT, essential for the transport of capsule polymer across the cytoplasmic membrane. The hydrophobicity profile of KpsM suggests that it is an integral membrane protein while KpsT contains a consensus ATP-binding site. KpsM and KpsT belong to the ATP-binding cassette (ABC) superfamily of membrane transporters. In this study, we investigate the topology of KpsM within the cytoplasmic membrane using β-lactamase fusions and alkaline phosphatase sandwich fusions. Our analysis provides evidence for a model of KpsM having six membrane-spanning regions, with the N- and C-terminal domains facing the cytoplasm, and a short domain within the third periplasmic loop, which we refer to as the SV–SVI linker localizing in the membrane. Protease digestion studies are consistent with regions of KpsM exposed to the periplasmic space. In vivo cross-linking studies provide support for dimerization of KpsM within the cytoplasmic membrane. Linker-insertion and site-directed mutagenesis define the N-terminus, the first cytoplasmic loop, and the SV-SVI linker as regions that are important for the function of KpsM in K1 polymer transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号