首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several alpha1-adrenoceptor (AR) selective antagonists are now widely used to improve lower urinary tract symptoms in benign prostatic hyperplasia patients. However, these drugs often result in orthostatic hypotension, because of their poor uroselectivity; the blockade of alpha1-AR not only in prostate but also in vasculature. Here we have investigated uroselectivity of JTH-601, a newly developed antagonist, in radioligand binding experiment using recombinant human alpha1-AR subtypes and human prostate. In saturation experiments, [3H]-JTH-601 showed subtype selectivity: high affinity to alpha1a-AR (pKd; 9.88+/-0.09), lower affinity to alpha1b-AR (pKd; 8.96+/-0.17) and no specific binding at concentrations up to 3000 pM to alpha1d-AR. In competition experiments, JTH-601 and its metabolic compound (JTH-601-G1) also showed alpha1a-AR selectivity, exhibiting approximately 5 times higher affinity for alpha1a-AR than for alpha1b-AR, 10 to 20 times higher affinity than for alpha1d-AR, respectively. [3H]-JTH-601 also bound to human prostate membranes in monophasic manner with high affinity constant (pKd; 9.89+/-0.12, Bmax=123.6+/-16 fmol/mg protein). JTH-601 is a unique alpha1-AR antagonist that shows high affinity and selectivity for human recombinant alpha1a- and human prostate. This new compound is useful for understanding alpha1-AR pharmacology and may have a therapeutic value.  相似文献   

3.
4.
We have recently shown that the alpha 2C10 adrenergic receptor (AR) undergoes short term agonist-promoted desensitization, mediated by phosphorylation of sites in the third intracellular loop. There is significant divergence in the third loop amino acid sequences between alpha 2C10 and the other subtypes, alpha 2C4 and alpha 2C2. We therefore explored the mechanisms of alpha 2AR subtype desensitization by expressing each human subtype in Chinese hamster ovary cells and subjecting them to short and long term epinephrine exposures. After 30 min of agonist exposure, alpha 2C10 and alpha 2C2 displayed desensitization characterized by rightward shifts in the curves for epinephrine-mediated inhibition of adenylyl cyclase (EC50 = alpha 2C10, 0.24 +/- 0.02 microM increasing to 1.1 +/- 0.1 microM; alpha 2C2, 1.3 +/- 0.3 increasing to 2.6 +/- 0.3 microM). Coincident with alpha 2C10 and alpha 2C2 desensitizations were decreases in agonist high affinity binding. In contrast, alpha 2C4 underwent no functional desensitization after short term agonist exposure, nor were there any changes in agonist high affinity binding. Agonist-promoted receptor sequestration was clearly greater with alpha 2C10 (approximately 26%) and alpha 2C2 (approximately 35%) as compared to alpha 2C4 (approximately 12%), but such sequestration did not play a significant role in short term desensitization, as blockade with concanavalin A had no effect on desensitization patterns. In contrast to these findings, all alpha 2AR subtypes underwent desensitization after prolonged (24 h) agonist exposure. However, alpha 2C10 and alpha 2C2 displayed substantially more desensitization (approximately 20-fold increase in EC50) as compared to alpha 2C4 (approximately 5-fold increase). The primary mechanism of desensitization during long term agonist exposure was found to be a decrease in the amount of cellular Gi, which was equivalent in magnitude in cells expressing all three subtypes. However, in addition to a decrease in Gi, alpha 2C10 and alpha 2C2 underwent down-regulation of receptor levels during long term agonist exposure, while alpha 2C4 did not. Given that all three subtypes bind endogenous catecholamines with high affinity and inhibit adenylyl cyclase efficiently, the significance of multiple subtypes has heretofore been obscure. Our results show that alpha 2AR undergo subtype-selective desensitization to agonists and suggest that alpha 2AR subtypes may have evolved to meet differing needs for adaptive regulation.  相似文献   

5.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

6.
The alpha-1 adrenergic receptors (alpha(1)ARs) play important roles in normal physiology and in many disease states, and understanding their signaling pathways and regulatory mechanisms is thus of considerable relevance, in particular for identifying pharmacological targets for therapeutic modulation. The expression, function, localization, trafficking, and stability of these receptors are all subject to complex regulation by diverse molecular mechanisms. This article highlights recent studies from our laboratory and others focused on the localization and trafficking of the alpha-1B adrenergic receptor (alpha(1B)AR) subtype and on changes in its stability that are likely to be involved in regulating receptor expression. The role(s) of protein kinase C in alpha(1B)AR sequestration, endocytosis, and extracellular signal-regulated kinase (ERK) activation are summarized, and evidence for alpha(1B)AR localization in caveolae/rafts is presented. Receptor structural domains involved in the multiple steps and mechanisms of agonist-induced desensitization are described. Finally, aspects of alpha(1B)AR structural stability that appear to control its drug-induced up- and down-regulation are discussed. Our understanding of regulation for the alpha(1B)AR subtype provides a model for studies of the differential regulation of the other alpha(1)AR subtypes and may lead to identification of new molecular targets for therapeutic intervention in a variety of disease states.  相似文献   

7.
The alpha(2)-adrenergic receptors (alpha(2)ARs) play a critical role in modulating neurotransmitter release in the central and peripheral sympathetic nervous systems. A polymorphism of the alpha(2)AR subtype localized to human chromosome 4 (the pharmacologic alpha(2C)AR subtype) within an intracellular domain has been identified in normal individuals. The polymorphism (denoted Del322-325) is because of an in-frame 12-nucleic acid deletion encoding a receptor lacking Gly-Ala-Gly-Pro in the third intracellular loop. To delineate the functional consequences of this structural alteration, Chinese hamster ovary cells were permanently transfected with constructs encoding wild-type human alpha(2C)AR and the polymorphic receptor. The Del322-325 variant had decreased high affinity agonist binding (K(H) = 7.3 +/- 0.95 versus 3.7 +/- 0.43 nm; %R(H) = 31 +/- 4 versus 49 +/- 4) compared with wild-type indicating impaired formation of the agonist-receptor-G protein complex. The polymorphic receptor displayed markedly depressed epinephrine-promoted coupling to G(i), inhibiting adenylyl cyclase by 10 +/- 4.3% compared with 73 +/- 2.4% for wild-type alpha(2C)AR. This also was so for the endogenous ligand norepinephrine and full and partial synthetic agonists. Depressed agonist-promoted coupling to the stimulation of MAP kinase ( approximately 71% impaired) and inositol phosphate production ( approximately 60% impaired) was also found with the polymorphic receptor. The Del322-325 receptor was approximately 10 times more frequent in African-Americans compared with Caucasians (allele frequencies 0.381 versus 0.040). Given this significant loss of function phenotype in several signal transduction cascades and the skewed ethnic prevalence, Del322-325 represents a pharmacoethnogenetic locus and may also be the basis for interindividual variation in cardiovascular or central nervous system pathophysiology.  相似文献   

8.
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated. The aim of this study was to determine the role of A(1)ARs in adenosine-mediated regulation of vascular tone. A(1)AR-knockout [A(1)AR((-/-))] mice and available pharmacological tools were used to elucidate the function of A(1)ARs and the impact of these receptors on the regulation of vascular tone. Isolated aortic rings from A(1)AR((-/-)) and wild-type [A(1)AR((+/+))] mice were precontracted with phenylephrine, and concentration-response curves for adenosine and its analogs, 5'-N-ethyl-carboxamidoadenosine (NECA, nonselective), 2-chloro-N(6)-cyclopentyladenosine (CCPA, A(1)AR selective), 2-(2-carboxyethyl)phenethyl amino-5'-N-ethylcarboxamido-adenosine (CGS-21680, A(2A) selective), and 2-chloro-N(6)-3-iodobenzyladenosine-5'-N-methyluronamide (Cl-IBMECA, A(3) selective) were obtained to determine relaxation. Adenosine and NECA (0.1 microM) caused small contractions of 13.9 +/- 3.0 and 16.4 +/- 6.4%, respectively, and CCPA at 0.1 and 1.0 microM caused contractions of 30.8 +/- 4.3 and 28.1 +/- 3.9%, respectively, in A(1)AR((+/+)) rings. NECA- and CCPA-induced contractions were eliminated by 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, selective A(1)AR antagonist). Adenosine, NECA, and CGS-21680 produced an increase in maximal relaxation in A(1)AR((-/-)) compared with A(1)AR((+/+)) rings, whereas Cl-IBMECA did not produce contraction in either A(1)AR((+/+)) or A(1)AR((-/-)) rings. CCPA-induced contraction at 1.0 microM was eliminated by the PLC inhibitor U-73122. These data suggest that activation of A(1)ARs causes contraction of vascular smooth muscle through PLC pathways and negatively modulates the vascular relaxation mediated by other adenosine receptor subtypes.  相似文献   

9.
H Vierhapper 《Steroids》1990,55(4):177-180
The determination of urinary 5 alpha-androstane-3 alpha,17 beta-diol (3a-Diol) by gas chromatography/mass spectometry during and after the infusion of stable-labeled testosterone (T) represents an alternative to the use of radioactive label for turnover studies in vivo. Using this methodology to assess the urinary excretion rates of T and 3a-Diol in healthy men (n = 6) and women (n = 5) during and after the intravenous infusion (t = 4 hours) of 20 mg (men) or 5 mg (women) [13C]testosterone, the cumulative renal excretion of 13C-labeled T was found to be 15.6 +/- 9.6 micrograms/24 hours (men) and 1.1 +/- 1.6 micrograms/24 hours (women), equivalent to 0.08% +/- 0.05% and 0.02% +/- 0.03% of the infused amount of 13C-T, respectively. The cumulative excretion of 13C-3a-Diol was 67.7 +/- 19.9 micrograms/24 hours (men) and 10.0 +/- 6.0 micrograms/24 hours (women), equivalent to 0.3 +/- 0.1% and 0.2 +/- 0.1% of the infused dose of 13C-labeled testosterone, respectively.  相似文献   

10.
The proximal urethra and urinary bladder trigone play important roles in continence. We have previously shown that PGD2 is released from guinea pig bladder urothelium/suburothelium and can inhibit detrusor contractile responses. We presently wished to investigate PGD2 actions in guinea pig out‐flow region and the distribution of DP1/DP2 receptors. The effects of PGD2 on urothelium‐intact trigone and proximal urethra contractility were studied in organ bath experiments. Expression of DP1/DP2 receptor proteins was analysed by western blot. Immunohistochemistry was used to identify distribution of DP1/DP2 receptors. PGD2 in a dose‐dependent manner inhibited trigone contractions induced by electrical field stimulation (EFS) and inhibited spontaneous contractions of the proximal urethra. PGD2 was equally (trigone) or slightly less potent (urethra) compared with PGE2. Expression of DP1 and DP2 receptors was found in male guinea pig bladder trigone, neck and proximal urethra. In the trigone and proximal urethra, DP1 receptors were found on the membrane of smooth muscle cells and weak immunoreactivty was observed in the urothelium. DP2 receptors were distributed more widespread, weakly and evenly in the urothelium and smooth muscles. Inhibitory effects by PGD2 on motor activity of guinea pig trigone and proximal urethra are consistent with finding DP1 and DP2 receptors located in the urothelium and smooth muscle cells of the trigone and proximal urethra, and PGD2 may therefore be a modulator of the bladder out‐flow region, possibly having a function in regulation of micturition and a role in overactive bladder syndrome.  相似文献   

11.
Chemical signaling in autonomic neuromuscular transmission involves agents that function as neurotransmitters and/or neuromodulators. Using high performance liquid chromatography techniques with fluorescence and electrochemical detection we observed that, in addition to ATP and norepinephrine (NE), electrical field stimulation (EFS, 4-16 Hz, 0.1-0.3 ms, 15 V, 60-120 s) of isolated vascular and non-vascular preparations co-releases a previously unidentified compound with apparent nucleotide or nucleoside structure. Extensive screening of more than 25 nucleotides and nucleosides followed by detailed peak identification revealed that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in tissue superfusates upon EFS of canine mesenteric artery (CMA), canine urinary bladder, and murine urinary bladder in the amounts of 7.1 +/- 0.7, 26.5 +/- 4.5, and 15.1 +/- 3.2 fmol/mg of tissue, respectively. Smaller amounts of the beta-NAD metabolites cyclic adenosine 5'-diphosphoribose (cADPR) and ADPR were also present in the superfusates collected during EFS of CMA (2.5 +/- 0.9 and 5.8 +/- 0.8 fmol/mg of tissue, respectively), canine urinary bladder (1.8 +/- 0.5 and 9.0 +/- 6.0 fmol/mg of tissue, respectively), and murine urinary bladder (1.4 +/- 0.1 and 6.2 +/- 2.4 fmol/mg of tissue, respectively). The three nucleotides were also detected in the samples collected before EFS (0.2-1.6 fmol/mg of tissue). Exogenous beta-NAD, cADPR, and ADPR (all 100 nm) reduced the release of NE in CMA at 16 Hz from 27.8 +/- 6.0 fmol/mg of tissue to 15.5 +/- 5.0, 12 +/- 3.0, and 10.0 +/- 4.0 fmol/mg of tissue, respectively. In conclusion, we detected constitutive and nerve-evoked overflow of beta-NAD, cADPR, and ADPR in vascular and non-vascular smooth muscles, beta-NAD being the prevailing compound. These substances modulate the release of NE, implicating novel nucleotide mechanisms of autonomic nervous system control of smooth muscle.  相似文献   

12.
Coupling of the three alpha 2-adrenergic receptor (alpha 2AR) subtypes to Gi and Gs was studied in membranes from transfected CHO cells. We observed that in the presence of low concentrations of the alpha 2AR agonist UK-14304, alpha 2C10 mediated inhibition of adenylyl cyclase activity, whereas at high concentrations of agonist, alpha 2C10 mediated stimulation of adenylyl cyclase activity. We considered that this biphasic response was due to the coupling of alpha 2C10 to both Gi and Gs. To isolate functional Gs and Gi coupling, cells were treated with pertussis toxin or cholera toxin in doses sufficient to fully ADP-ribosylate the respective G-proteins. Following treatment with cholera toxin, agonists elicited only alpha 2C10-mediated inhibition (approximately 50%) of adenylyl cyclase while after pertussis toxin treatment, agonists elicited only alpha 2C10-mediated stimulation (approximately 60%) of adenylyl cyclase. Incubation of membranes with antisera directed against the carboxyl-terminal portion of Gs alpha blocked this functional alpha 2AR.Gs coupling to the same extent as that found for beta 2AR.Gs coupling. In addition to functional Gs coupling, we also verified direct, agonist-dependent, physical coupling of alpha 2AR to Gs alpha. In agonist-treated membranes, an agonist-receptor-Gs alpha complex was immunoprecipitated with a specific alpha 2C10 antibody, and the Gs component identified by both western blots using Gs alpha antibody, and cholera toxin mediated ADP-ribosylation. Due to the differences in primary amino acid structure in a number of regions of the alpha 2AR subtypes, we investigated whether G-protein coupling was subtype-selective, using UK-14304 and cells with the same alpha 2AR expression levels (approximately 5 pmol/mg). Coupling to Gi was equivalent for alpha 2C10, alpha 2C4, and alpha 2C2: 53.4 +/- 8.8% versus 54.9 +/- 1.0% versus 47.6 +/- 3.5% inhibition of adenylyl cyclase, respectively. In marked contrast, distinct differences in coupling to Gs were found between the three alpha 2AR subtypes: stimulation of adenylyl cyclase was 57.9 +/- 6.3% versus 30.7 +/- 1.1% versus 21.8 +/- 1.7% for alpha 2C10, alpha 2C4, and alpha 2C2, respectively. Thus, alpha 2AR have the potential to couple physically and functionally to both Gi and Gs; for Gi coupling we found a rank order of alpha 2C10 = alpha 2C4 = alpha 2C2, while for Gs coupling, alpha 2C10 greater than alpha 2C4 greater than alpha 2C2.  相似文献   

13.
Liver alpha(1)-adrenoceptors (ARs) are demonstrated, or at least hypothesized, in freshwater and brackish-water teleosts, whereas no data are available for marine teleosts. This study evaluates the presence of alpha(1)-ARs in the liver of two marine teleosts, the anchovy Engraulis encrasicolus and the mackerel Scomber scombrus, and examines on a broad scale the possibility that habitats posing different challenges also influence phenotypic trait selection. Binding assays were performed also on liver membranes from the carp Cyprinus carpio as a direct comparison with a freshwater species. Scatchard analysis of [(3)H]prazosin binding to purified liver membranes from anchovy, mackerel and carp resulted in K(d) values of 1.51+/-0.085, 1.26+/-0.098, and 2.61+/-0.22 nM, and B(max) values of 87.4+/-9.12, 77+/-8.29, and 115.22+/-3.31 fmol/mg protein, respectively. Thus, alpha(1)-ARs of the two marine teleosts showed higher [(3)H]prazosin affinity compared with those of the freshwater/brackish-water fish studied thus far, whereas the number of liver binding sites did not differ significantly from that of carp, eel or trout. A preliminary phylogeny based on amino acid sequence analysis indicated the presence of at least an alpha(1A)-AR in mackerel and an alpha(1D)-AR in both anchovy and mackerel. This is the first indication of alpha(1)-AR subtypes in any marine species, but further studies are needed to ascertain the physiological role of these alpha(1)-ARs in these two marine species.  相似文献   

14.
Two subtypes (alpha and beta) of androgen (AR) and progestogen receptors (PR) are present in the testis of Japanese eel (Anguilla japonica). Amino acid homology of the open reading frames between alpha and beta in AR or PR is approximately 40%, but the DNA- and ligand-binding domains show high homology between subtypes. Judging from these structures, alpha and beta are not isoforms derived from translational initiation at two in-phase ATG codons, alternative splicing, or tetraploidy. In transient transfection assays using a reporter construct containing a steroid-responsive promoter, each subtype showed its corresponding hormone-dependent transactivation. The ligand affinity for transactivation between AR and PR subtypes was similar for physiological ligands. Tissue distribution of both subtype mRNAs was different. Protein interaction between subtypes was demonstrated in vitro by GST pull-down assays. These results clearly indicate that two functional subtypes of AR and PR exist in eel. These findings will advance our understanding of the mechanisms underlying sex steroid signaling.  相似文献   

15.
Function of myocardial alpha-adrenoceptors   总被引:3,自引:0,他引:3  
B G Benfey 《Life sciences》1990,46(11):743-757
In addition to beta-adrenoceptors (beta ARs), cardiac myocytes of animals and man possess alpha 1ARs, but not alpha 2ARs. Norepinephrine and epinephrine have a higher affinity for myocardial alpha 1ARs than for beta ARs. Unlike beta AR stimulation, myocardial alpha 1AR stimulation does not increase the slow inward current. The alpha 1AR-mediated positive inotropic effect seen in isolated heart preparations appears to involve increased Ca sensitivity of myofibrils and production of inositol triphosphate (IP3) and diacylglycerol (DAG), but the functions of IP3 and DAG are not clear. Myocardial alpha 1AR stimulation reduces rate of isolated atria and Purkinje fibers and lengthens refractory period and action potential duration. Hypoxia increases alpha 1AR density in cardiomyocytes. alpha 1AR-mediated arrhythmias occur in isolated Purkinje fibers during hypoxia, following infarction, and in the presence of Ba2+ or high Ca2+. In animals, coronary artery occlusion and/or reperfusion increase myocardial alpha 1AR density and responsiveness, and alpha AR blocking drugs attenuate arrhythmias. However, an antiarrhythmic effect of alpha AR blocking drugs mediated by action on coronary vascular alpha ARs cannot be excluded. Presently available drugs do not differentiate between myocardial and vascular alpha ARs and thus affect the coronary and systemic circulations and, indirectly, the heart. Additional myocardial alpha 1AR-mediated effects include production of cardiac hypertrophy, stimulation of glucose uptake and phosphofructokinase and cyclic AMP phosphodiesterase activity, and release of atrial natriuretic peptide.  相似文献   

16.
Summary Fluorescence and electron microscopy have been used to study the distribution of noradrenergic nerves in the smooth muscle of the cat urinary bladder. Using the former technique, relatively few fluorescent noradrenergic nerves were observed in the body and fundus, while a rich plexus occurred adjacent to muscle cells of the bladder neck. The trigone could not be distinguished neuromorphologically from detrusor muscle in this region. Electron microscopy showed that the majority of noradrenergic terminals in the body and fundus were associated with presumptive cholinergic axons, while in the bladder neck noradrenergic terminals formed typical neuroeffector relationships with individual smooth muscle cells.Numerous ganglia occurred both in the adventitia and among the smooth muscle bundles, particularly in the bladder neck. The majority of the nerve cell bodies were non-fluorescent, although many contained bright orange autofluorescent granules, believed to be lysosomes. A small minority of ganglion cells were associated with fluorescent noradrenergic nerve terminals, thereby providing structural evidence for limited intraganglionic inhibition. In addition, occasional groups of small intensely fluorescent (SIF) cells were observed in some intramural ganglia and these were subsequently identified in the electron microscope. The possibility that these cells may provide a second inhibitory influence on bladder activity was considered.  相似文献   

17.
Urinary bladder voiding is a complex mechanism depending upon interplay among detrusor, urothelium, sensory and motor neurons and connective tissue cells. The identity of some of the latter cells is still controversial. We presently attempted to clarify their phenotype(s) in the human urinary bladder by transmission electron microscopy (TEM) and immunohistochemistry. At this latter aim, we used CD34, PDGFRα, αSMA, c‐Kit and calreticulin antibodies. Both, TEM and immunohistochemistry, showed cells that, sharing several telocyte (TC) characteristics, we identified as TC; these cells, however, differed from each other in some ultrastructural features and immunolabelling according to their location. PDGFRα/calret‐positive, CD34/c‐Kit‐negative TC were located in the sub‐urothelium and distinct in two subtypes whether, similarly to myofibroblasts, they were αSMA‐positive and had attachment plaques. The sub‐urothelial TC formed a mixed network with myofibroblasts and were close to numerous nerve endings, many of which nNOS‐positive. A third TC subtype, PDGFRα/αSMA/c‐Kit‐negative, CD34/calret‐positive, ultrastructurally typical, was located in the submucosa and detrusor. Briefly, in the human bladder, we found three TC subtypes. Each subtype likely forms a network building a 3‐D scaffold able to follow the bladder wall distension and relaxation and avoiding anomalous wall deformation. The TC located in the sub‐urothelium, a region considered a sort of sensory system for the micturition reflex, as forming a network with myofibroblasts, possessing specialized junctions with extracellular matrix and being close to nerve endings, might have a role in bladder reflexes. In conclusions, the urinary bladder contains peculiar TC able to adapt their morphology to the organ activity.  相似文献   

18.
In experimental obstructed bladder by urethral stenosis, the trigone and the detrusor walls thicken in a very important but different way. The thickened mucosa and submucosa of the total bladder show oedema and hypertrophy of the connective fibro-elastic tissue. Related to the different axis of the pressure inside the bladder and the specific muscular architecture of both regions, the adventitial and muscular layers show no modification in the trigone but they become thinner in the detrusor.  相似文献   

19.
alpha(1)-Adrenergic receptors (alpha(1A), alpha(1B), and alpha(1D)) are regulators of systemic arterial blood pressure and blood flow. Whereas vasoconstrictory action of the alpha(1A) and alpha(1D) subtypes is thought to be mainly responsible for this activity, the role of the alpha(1B)-adrenergic receptor (alpha(1B)AR) in this process is controversial. We have generated transgenic mice that overexpress either wild type or constitutively active alpha(1B)ARs. Transgenic expression was under the control of the isogenic promoter, thus assuring appropriate developmental and tissue-specific expression. Cardiovascular phenotypes displayed by transgenic mice included myocardial hypertrophy and hypotension. Indicative of cardiac hypertrophy, transgenic mice displayed an increased heart to body weight ratio, which was confirmed by the echocardiographic finding of an increased thickness of the interventricular septum and posterior wall. Functional deficits included an increased isovolumetric relaxation time, a decreased heart rate, and cardiac output. Transgenic mice were hypotensive and exhibited a decreased pressor response. Vasoconstrictory regulation by alpha(1B)AR was absent as shown by the lack of phenylephrine-induced contractile differences between ex vivo mesenteric artery preparations. Plasma epinephrine, norepinephrine, and cortisol levels were also reduced in transgenic mice, suggesting a loss of sympathetic nerve activity. Reduced catecholamine levels together with basal hypotension, bradycardia, reproductive problems, and weight loss suggest autonomic failure, a phenotype that is consistent with the multiple system atrophy-like neurodegeneration that has been reported previously in these mice. These results also suggest that this receptor subtype is not involved in the classic vasoconstrictory action of alpha(1)ARs that is important in systemic regulation of blood pressure.  相似文献   

20.
In allergic asthma Beta 2 adrenergic receptors (β2ARs) are important mediators of bronchorelaxation and, paradoxically, asthma development. This contradiction is likely due to the activation of dual signaling pathways that are downstream of G proteins or β-arrestins. Our group has recently shown that β-arrestin-2 acts in its classical role to desensitize and constrain β2AR-induced relaxation of both human and murine airway smooth muscle. To assess the role of β-arrestins in regulating β2AR function in asthma, we and others have utilized β-arrestin-1 and -2 knockout mice. However, it is unknown if genetic deletion of β-arrestins in these mice influences β2AR expression in the airways. Furthermore, there is lack of data on compensatory expression of βAR subtypes when either of the β-arrestins is genetically deleted, thus necessitating a detailed βAR subtype expression study in these β-arrestin knockout mice. Here we standardized a radioligand binding methodology to characterize and quantitate βAR subtype distribution in the airway smooth muscle of wild-type C57BL/6J and β-arrestin-1 and β-arrestin-2 knockout mice. Using complementary competition and single-point saturation binding assays we found that β2ARs predominate over β1ARs in the whole lung and epithelium-denuded tracheobronchial smooth muscle of C57BL/6J mice. Quantification of βAR subtypes in β-arrestin-1 and β-arrestin-2 knockout mouse lung and epithelium-denuded tracheobronchial tissue showed that, similar to the C57BL/6J mice, both knockouts display a predominance of β2AR expression. These data provide further evidence that β2ARs are expressed in greater abundance than β1ARs in the tracheobronchial smooth muscle and that loss of either β-arrestin does not significantly affect the expression or relative proportions of βAR subtypes. As β-arrestins are known to modulate β2AR function, our analysis of βAR subtype expression in β-arrestin knockout mice airways sets a reference point for future studies exploiting these knockout mice in various disease models including asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号