首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms involved in the neuroprotection induced by hypoxic preconditioning (HP) have not been fully elucidated. The involvement of hypoxia-inducible factor-1 alpha (HIF-1alpha) in such neuroprotection has been confirmed. There is also evidence showing that a series of genes with important functions in iron metabolism, including transferrin receptor (TfR1) and divalent metal transporter 1 (DMT1), are regulated by HIF-1alpha in response to hypoxia in extra-neural organs or cells. We therefore hypothesized that HP is able to affect the expression of iron metabolism proteins in the brain and that changes in these proteins induced by HP might be associated with the HP-induced neuroprotection. We herein demonstrated for the first time that HP could induce a significant increase in the expression of HIF-1alpha as well as iron uptake (TfR1 and DMT1) and release (ferroportin1) proteins, and thus increase tansferrin-bound iron (Tf-Fe) and non-transferrin-bound iron (NTBI) uptake and iron release in astrocytes. Moreover, HP could lead to a progressive increase in cellular iron content. We concluded that HP has the ability to increase iron transport speed in astrocytes. Based on our findings and the importance of astrocytes in neuronal survival in hypoxic/ischemic preconditioning, we proposed that the increase in iron transport rate and cellular iron in astocytes might be one of the mechanisms associated with the HP-induced neuroprotection. We also demonstrated that ferroportin1 expression was significantly affected by HIF-1alpha in astrocytes, implying that the gene encoding this iron efflux protein might be a hypoxia-inducible one.  相似文献   

2.
The mechanisms of neuroprotection induced by hypoxic preconditioning (HP) and the effects of HP on iron metabolism proteins in the brain have not been fully elucidated. Based on the accumulated information, we hypothesized that HP would be able to affect the expression of iron metabolism proteins in the brain and that the changes in the expression of these proteins induced by HP might be partly associated with the HP-induced neuroprotection. Here, we demonstrated for the first time that HP could induce a significant increase in the expression of HIF-1alpha as well as iron uptake (TfR1 and DMT1) and release (Fpn1) proteins and thus increase transferrin-bound iron (Tf-Fe) and non-transferrin-bound iron (NTBI) uptake and iron release, and also a progressive increase in cellular iron content in the cultured neurons. We concluded that HP has the ability to speed iron transport rate and proposed that the increase in iron transport rate and cellular iron in neurons might be one of the mechanisms involved in neuroprotection in the HP neurons. We also demonstrated that Fpn1 expression was significantly affected by HIF-1alpha, implying that the gene encoding this iron efflux protein is hypoxia-inducible.  相似文献   

3.
Transferrin and transferrin receptor are two key proteins of iron metabolism that have been identified to be hypoxia-inducible genes. Divalent metal transporter 1 (DMT1) is also a key transporter of iron under physiological conditions. In addition, in the 5' regulatory region of human DMT1 (between -412 and -570), there are two motifs (CCAAAGTGCTGGG) that are similar to hypoxia-inducible factor-1 (HIF-1) binding sites. It was therefore speculated that DMT1 might also be a hypoxia-inducible gene. We investigated the effects of hypoxia and hypoxia/re-oxygenation on the expression of DMT1 and the content of HIF-1alpha in HepG2 cells. As we expected, a very similar tendency in the responses of the expression of HIF-1alpha, DMT1+IRE (iron response element) and DMT1-IRE proteins to chemical (CoCl(2)) or physical hypoxia was observed. A highly significant correlation was found between the expression of DMT1 proteins and the contents of HIF-1 in hypoxic cells. After the cells were exposed to hypoxia and subsequent normoxia, no HIF-1alpha could be detected and a significant decrease in DMT1+IRE expression (P<0.05), but not in DMT1-IRE protein (versus the hypoxia group), was observed. The findings implied that the HIF-1 pathway might have a role in the regulation of DMT1+IRE expression during hypoxia.  相似文献   

4.
Previous studies have demonstrated an effect of estrogen on iron metabolism in peripheral tissues. The role of estrogen on brain iron metabolism is currently unknown. In this study, we investigated the effect and mechanism of estrogen on iron transport proteins. We demonstrated that the iron exporter ferroportin 1 (FPN1) and iron importer divalent metal transporter 1 (DMT1) were upregulated and iron content was decreased after estrogen treatment for 12 hr in primary cultured astrocytes. Hypoxia-inducible factor-1 alpha (HIF-1α) was upregulated, but HIF-2α remained unchanged after estrogen treatment for 12 hr in primary cultured astrocytes. In primary cultured neurons, DMT1 was downregulated, FPN1 was upregulated, iron content decreased, iron regulatory protein (IRP1) was downregulated, but HIF-1α and HIF-2α remained unchanged after estrogen treatment for 12 hr. These results suggest that the regulation of iron metabolism by estrogen in astrocytes and neurons is different. Estrogen increases FPN1 and DMT1 expression by inducing HIF-1α in astrocytes, whereas decreased expression of IRP1 may account for the decreased DMT1 and increased FPN1 expression in neurons.  相似文献   

5.
Recent evidence indicated that sublethal hypoxic preconditioning (HP) of bone marrow-derived mesenchymal stem cells (MSCs) before transplantation could ameliorate their capacity to survive and engraft in the target tissue through yet undefined mechanisms. In this study, we demonstrated that HP (3% oxygen) induced the high expression of both chemokine stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, in MSCs. HP also improved in vitro migration, adhesion and survival of MSCs. Although SDF-1-induced migration of HP-MSCs was only abolished by an anti-CXCR4 antibody, both CXCR4 and CXCR7 were responsible for elevated adhesion of HP-MSCs. Moreover, CXCR7 but not CXCR4 was essential for the resistance to oxidative stress of HP-MSC. In addition, HP also evoked an increase in expression of hypoxia-inducible factor-1 (HIF-1α) and phosphorylation of Akt. The chemical inducers of HIF-1α, desferrioxamine (DFX) and cobalt chloride (CoCl2), induced upregulation of CXCR4 and CXCR7 expression in MSCs under normoxic conditions. Contrarily, blockade of HIF-1α by siRNA and inhibition of Akt by either wortmannin or LY294002 abrogated upregulation of HP-induced CXCR4 and CXCR7 in MSCs. Collectively, these findings provide evidence for a crucial role of PI3K/Akt-HIF-1α-CXCR4/CXCR7 pathway on enhanced migration, adhesion and survival of HP-MSCs in vitro.  相似文献   

6.
Xu FF  Liu XH  Cai LR 《生理学报》2004,56(5):609-614
本工作旨在研究缺氧预处理(hypoxic preconditioning,HPC)对于心肌细胞外信号调节激酶(extracellular signal-regulated proteinkinases,ERK)活性、缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)表达的影响,及其在缺氧复氧诱导心肌细胞损伤中的作用。通过在培养的SD乳鼠心肌细胞缺氧/复氧(H/R)模型上,观察HPC对于24h后H/R诱导心肌细胞损伤的影响,以台盼蓝排斥实验检测心肌细胞存活率、以TUNEL法检测细胞凋亡、并用荧光素染料Hoechst33258测定心肌细胞凋亡率:制备心肌细胞蛋白提取物,以磷酸化的ERK1/2抗体测定ERK1/2活性,以抗HIF-1α抗体检测HIF-1α的表达,并观察ERKs的上游激酶(MEK1/2)抑制剂PD98059对于HPC诱导的ERKs磷酸化、HIF-1α表达以及心肌细胞保护作用的影响,并分析细胞损伤与ERK1/2活性、HIF-1α表达量之间的相互关系。结果 显示缺氧复氧造成心肌细胞损伤,HPC可以增加心肌细胞H/R后存活率,降低凋亡率,并激活ERKll2,诱导HIF-1α表达:细胞凋亡与ERKs活性、HIF-1α表达量之间存在负相关,即ERKs活化、HIF-1α表达与预防细胞损伤有关:而ERKs活性与HIF-1α表达量之间存在正相关,ERKs的上游激酶MEK抑制剂PD98059可以消除HPC诱导的ERKs磷酸化、HIF-1α表达和心肌细胞保护作用。由此得出的结论是HPC可以提高乳鼠心肌细胞对于H/R的耐受性,其机制涉及ERKs介导的HIF-1α表达。  相似文献   

7.
8.
Hypoxic preconditioning can play a significant neuroprotective role. However, it has not been employed clinically because of safety concerns. To find a safer preconditioning stimulus that is both practical and effective, we investigated whether ginkgolides are capable of preconditioning as hypoxia to protect C6 cells against ischemic injury. We demonstrated that both ginkgolides (37.5microg/mL) and hypoxia (1% O(2) for 16h) can significantly increase cell viabilities and expression of phosphorylated glycogen synthase kinase (p-GSK), phosphorylated extracellular signal-regulated kinase (p-ERK), hypoxia-inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) in ischemic cells. The inhibitors of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3'-kinase (PI3K) significantly but not completely reduced the enhanced expression of these proteins and cell viabilities induced by ginkgolides and hypoxic preconditioning. These indicated that ginkgolides could mimic hypoxic preconditioning by increasing expression of HIF-1alpha as well as its target protein EPO and that the ginkgolides and hypoxic preconditioning role might be partly mediated by the activation of the p42/p44-mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/AKT/glycogen synthase kinase 3beta pathways. The similar tendency in the changes of protein expression, cell viabilities and responses to MAPK or PI3K inhibitors of the cells treated with ginkgolides and hypoxia suggests that ginkgolides and hypoxic preconditioning might operate by similar mechanisms. The findings also imply that ginkgolides might have the potential for clinical use to prevent injury in high-risk conditions.  相似文献   

9.
It has been demonstrated that hypoxia-inducible factor-1 alpha (HIF-1 alpha) mediates ischemic tolerance induced by hypoxia/ischemia or pharmacological preconditioning. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized HIF-1 alpha might also be associated with ischemic tolerance induced by hyperthermic preconditioning. In the present study, we demonstrated for the first time that 6 h of hyperthermia (38 °C or 40 °C) could induce a characteristic “reactive” morphology and a significant increase in the expression of bystin in astrocytes. We also showed that pre-treatment with 6 h of hyperthermia resulted in a significant increase in cell viability and a remarkable decrease in lactate dehydrogenase (LDH) release and apoptosis development in the astrocytes that were exposed to 24 h of ischemia and a subsequent 24 h of reperfusion. Analysis of mechanisms showed that hyperthermia could lead to a significant increase in HIF-1 alpha expression and also the HIF-1 binding activity in the ischemia/reperfusion astrocytes. The data provide evidence to our hypothesis that the up-regulation of HIF-1 alpha is associated with the protective effects of hyperthermic preconditioning on astrocytes against ischemia/reperfusion injury.  相似文献   

10.
11.
12.
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft‐L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O‐acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft‐L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft‐L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre‐treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.  相似文献   

13.
14.
This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1alpha (HIF-1alpha) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT-PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1alpha induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1alpha and EPO for the possible treatment of stroke.  相似文献   

15.
16.
17.
18.
Hypoxic exposure of cells or organisms induces expression of a number of hypoxia responsive genes through the activation of the hypoxia-inducible factor-1 (HIF-1). One of the most prominent HIF-1 targets is erythropoietin that has beneficial effects on ischemia-related injury in the brain. Exposure to low environmental oxygen concentrations can be used as a preconditioning paradigm to protect cells or tissues against a variety of harmful conditions. Here, we summarize recent work on neuroprotection of retinal photoreceptors and ganglion cells induced by hypoxic preconditioning or by systemically elevated levels of Epo in mouse plasma.  相似文献   

19.
20.
We investigated the remodeling of iron metabolism during megakaryocytic development of K562 cells. Differentiation was successfully verified by increase of the megakaryocytic marker CD61 and concomitant decrease of the erythroid marker γ-globin. The reduction of erythroid properties was accompanied by changes in the cellular iron content and in the expression of proteins regulating cellular iron homeostasis. Independent of available inorganic or transferrin-bound extracellular iron, total intracellular iron increases while the iron-to-protein ratio decreases. The iron exporter ferroportin is downregulated within 1-6 h, followed by downregulation of transferrin receptor-1 (TfR1) and ferritin heavy chain (H-ferritin) mainly after 24-48 h. The hemochromatosis protein-1, a ligand of TfR1, peaked after 24 h. All effects were independent of iron supply with the exception of H-ferritin, which was restored by excess iron. While alterations of CD61, TfR1 and ferritin expression were revoked by a protein kinase C inhibitor, downregulation of ferroportin remained unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号