首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Background aimsPancreatic cancer, sometimes called a ‘silent killer’, is one of the most aggressive human malignancies, with a very poor prognosis. It is the fourth leading cause of cancer-related morbidity and mortality in the USA.MethodsA mouse peritoneal model was used to test the ability of unengineered rat umbilical cord matrix-derived stem cells (UCMSC) to control growth of pancreatic cancer. In vivo results were supported by various in vitro assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), direct cell count, [3H]thymidine uptake and soft agar colony assays.ResultsCo-culture of rat UCMSC with PAN02 murine pancreatic carcinoma cells (UCMSC:PAN02, 1:6 and 1:3) caused G0/G1 arrest and significantly attenuated the proliferation of PAN02 tumor cells, as monitored by MTT assay, direct cell counts and [3H]thymidine uptake assay. Rat UCMSC also significantly reduced PAN02 colony size and number, as measured by soft agar colony assay. The in vivo mouse studies showed that rat UCMSC treatment significantly decreased the peritoneal PAN02 tumor burden 3 weeks after tumor transplantation and increased mouse survival time. Histologic study revealed that intraperitoneally administered rat UCMSC survived for at least 3 weeks, and the majority were found near or inside the tumor.ConclusionsThese results indicate that naive rat UCMSC alone remarkably attenuate the growth of pancreatic carcinoma cells in vitro and in a mouse peritoneal model. This implies that UCMSC could be a potential tool for targeted cytotherapy for pancreatic cancer.  相似文献   

2.
Abstract

The pineal hormone, melatonin (MLT), has been shown to have therapeutic effects in patients with gastric cancer; however, the mechanisms for the anti-cancer effects are unknown. We investigated the effects of melatonin on cell proliferation, apoptosis, colony formation and cell migration in the gastric adenocarcinoma cell line, SGC7901, using MTT assay, Hoechst 33258 staining, flow cytometry, western blot, caspase-3 activity assay, soft agar colony formation assay, and scratch-wound assay. Our results showed that melatonin could inhibit cell proliferation, colony formation and migration efficiency, and it promoted apoptosis of SGC7901 cells. Our findings suggest that the anti-cancer effects of melatonin may be due to both inhibition of tumor cell proliferation and reduction of the metastatic potential of tumor cells.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite progress in the treatment of OSCC, overall survival has not improved substantially in the last three decades. Therefore, identification of reliable biomarkers becomes essential to develop effective anti-cancer therapy. In this study, we focused on the enzyme Nicotinamide N-methyltransferase (NNMT), which plays a fundamental role in the biotransformation of many xenobiotics. Although several tumors have been associated with abnormal NNMT expression, its role in cancer cell metabolism remains largely unknown. In this report, 7 human oral cancer cell lines were examined for NNMT expression by Real-Time PCR, Western blot and HPLC-based catalytic assay. Subsequently, we evaluated the in vitro effect of shRNA-mediated silencing of NNMT on cell proliferation. In vivo tumorigenicity of oral cancer cells with stable knockdown of NNMT was assayed by using xenograft models. High expression levels of NNMT were found in PE/CA PJ-15 cells, in keeping with the results of Western blot and catalytic activity assay. PE/CA PJ-15 cell line was stably transfected with shRNA plasmids against NNMT and analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and soft agar Assays. Transfected and control cells were injected into athymic mice in order to evaluate the effect of NNMT silencing on tumor growth. NNMT downregulation resulted in decreased cell proliferation and colony formation ability on soft agar. In athymic mice, NNMT silencing induced a marked reduction in tumour volume. Our results show that the downregulation of NNMT expression in human oral carcinoma cells significantly inhibits cell growth in vitro and tumorigenicity in vivo. All these experimental data seem to suggest that NNMT plays a critical role in the proliferation and tumorigenic capacity of oral cancer cells, and its inhibition could represent a potential molecular approach to the treatment of oral carcinoma.  相似文献   

4.
BackgroundThe lncRNA colorectal neoplasia differentially expressed (lncRNA CRNDE) has been reported to play a pivotal role in various cancers. However, the expression and function of CRNDE in pancreatic cancer remain unclear. The objective of this study was to investigate the effects of CRNDE on pancreatic cancer and the underlying mechanisms.MethodsThe expression of CRNDE in pancreatic cancer tissues and cell lines was determined by RT-qPCR. Proliferation and angiogenesis were detected by MTT, colony formation, transwell and tube formation assays in vitro and in vivo. ELISA assay was used to detect the secretion of VEGFA. IHC was performed to test the expression levels of Ki67 and CD31. The binding sites between CRNDE, CDKN2D and miR-451a were predicted by bioinformatics analysis. Dual luciferase reporter and RNA immunoprecipitation assays were conducted to confirm the interaction with each other.ResultsThe results showed that CRNDE was significantly up-regulated in pancreatic cancer tissues as well as cell lines. CRNDE overexpression promoted the progression and angiogenesis of pancreatic cancer cells in vitro and in vivo. Moreover, we identified that CRNDE functioned as a sponge for miR-451a and CRNDE overexpression inhibited the expression of miR-451a. Furthermore, we confirmed that miR-451a directly interacted with CDKN2D and negatively regulated CDKN2D expression. In addition, CRNDE was found to positively regulate CDKN2D expression and mediate pancreatic cancer cell proliferation and angiogenesis through miR-451a/CDKN2D axis.ConclusionCRNDE modulates cell proliferation and angiogenesis via miR-451a/CDKN2D axis in pancreatic cancer, which provides a potential therapeutic target for pancreatic cancer treatment.  相似文献   

5.
Chemoresistance is a common occurrence during advanced or recurrent cervical cancer therapy when treated by conventional treatment, platinum‐based chemotherapy. This study aimed to investigate the effect and underlying mechanism of tanshinone I on attenuating proliferation and chemoresistance of cervical cancer cells. In cervical cancer cells, cell proliferation was examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), cell count, and soft‐agar colony‐formation assay. rVista analysis and luciferase reporter assay were used to explore the upstream regulator of KRAS, and the expression levels of key genes were also detected. Western blot analysis showed that tanshinone I significantly suppressed KRAS expression and inhibited AKT phosphorylation. rVista analysis and luciferase reporter assay demonstrated that ELK1 can binds directly to KRAS promoter and positively regulates KRAS expression. MTT assay showed that KRAS or ELK1 overexpression significantly attenuated the suppressive effects of tanshinone I on HeLa cells proliferation. In addition, tanshinone I recovered the cisplatin sensitivity of HeLa CR cells, whereas KRAS or ELK1 overexpression significantly inhibited this phenomenon. Our results suggested that tanshinone I had anticancer effects on cervical cancer cells via inhibiting ELK1 and downregulating KRAS‐AKT axis, which subsequently suppressed the proliferation and cisplatin resistance of cervical cancer cells.  相似文献   

6.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.  相似文献   

7.
Zeng G  Cai S  Liu Y  Wu GJ 《Gene》2012,492(1):229-238
Previous research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as a promoter or a suppressor in the development of human breast cancer by MCF7, MDA-MB-231, and MDA-MB-468. To resolve these conflicting results we have investigated the role of this CAM in the progression of the three aforementioned cell lines plus one additional human breast cancer cell line, SK-BR-3. We transfected the SK-BR-3 cells with human METCAM/MUC18 cDNA to obtain G418-resistant clones, which expressed different levels of the protein and which were used to test the effect of human METCAM/MUC18 expression on in vitro motility, invasiveness, anchorage-independent colony formation in soft agar, disorganized growth in a 3D basement membrane culture assay, and in vivo tumorigenesis in athymic nude mice. Enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, and anchorage-independent colony formation of SK-BR-3 cells and favored disorganized growth of the cells in 3D basement membrane culture. Enforced expression also increased tumorigenicity and final tumor weights of SK-BR-3 clones/cells after subcutaneous injection of the cells under the left third nipple of female athymic nude mice. To understand the mechanisms, we also determined the expression of several downstream key effectors in the tumors. Tumor cells from METCAM/MUC18 expressing clones exhibited elevated expression of an anti-apoptotic and survival index (Bcl2), an aerobic glycolysis index (LDH-A), and pro-angiogenesis indexes (VEGF and VAGFR2). We concluded that human METCAM/MUC18 promotes the development of breast cancer cells by increasing an anti-apoptosis and survival pathway and augmenting aerobic glycolysis and angiogenesis.  相似文献   

8.
BackgroundLung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored.PurposeIn the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death.MethodsThe regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis.ResultsPPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells.ConclusionThese results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.  相似文献   

9.
《遗传学报》2021,48(7):571-581
Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity.Mouse SCLC cells derived from the Rb1~(L/L)/Trp53~(L/L)(RP) autochthonous mouse model grew as adhesion or suspension in cell culture,and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells.Here,we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymallike (Mes) and epithelial-like (Epi) SCLC cells.The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells.Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells.Importantly,inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2(Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays.Moreover,genetic deletion of Tgfbr2 or Smad4,the key components of the TGF-β signaling pathway,dramatically attenuates SCLC metastasis in the RP autochthonous mouse model.Collectively,our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.  相似文献   

10.
BackgroundThe 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown.PurposeThe present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro.MethodsEvaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting.Results3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS.ConclusionROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.  相似文献   

11.
Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.  相似文献   

12.
13.

Background

Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules.

Methodology/Principal Findings

The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish), the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells.

Conclusion/Significance

Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers.  相似文献   

14.
Cancer cell spheroids have been shown to be more physiologically relevant to native tumor tissue than monolayer 2D culture cells. Due to enhanced intercellular communications among cells in spheroids, spheroid secreted exosomes which account for transcellular transportation should exceed those from 2D cell culture and may display a different expression pattern of miRNA or protein. To test this, we employed a widely used pancreatic cancer cell line, PANC-1, to create 3D spheroids and compared exosomes generated by both 2D cell culture and 3D PANC-1 spheroids. We further measured and compared exosomal miRNA and GPC-1 protein expression with qRT-PCR and enzyme-linked immunosorbent assay, respectively. It showed that PANC-1 cells cultured in 3D spheroids can produce significantly more exosomes than PANC-1 2D cells and exosomal miRNA and GPC-1 expression derived from spheroids show more features relevant to the progression of pancreatic cancer. These findings point to the potential importance of using spheroids as in vitro model to study cancer development and progression.  相似文献   

15.
Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.  相似文献   

16.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

17.
18.
19.
PurposeRecent studies have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is a key molecule in sustaining androgen-mediated prostate cancer cell survival. Thus, the aim of this study was to determine whether 20-HETE can affect the metastatic potential of androgen-insensitive prostate cancer cells, and the implication of the newly described 20-HETE receptor, GPR75, in mediating these effects.MethodsThe expression of GPR75, protein phosphorylation, actin polymerization and protein distribution were assessed by western blot and/or fluorescence microscopy. Additionally, in vitro assays including epithelial-mesenchymal transition (EMT), metalloproteinase-2 (MMP-2) activity, scratch wound healing, transwell invasion and soft agar colony formation were used to evaluate the effects of 20-HETE agonists/antagonists or GPR75 gene silencing on the aggressive features of PC-3 cells.Results20-HETE (0.1 nM) promoted the acquisition of a mesenchymal phenotype by increasing EMT, the release of MMP-2, cell migration and invasion, actin stress fiber formation and anchorage-independent growth. Also, 20-HETE augmented the expression of HIC-5, the phosphorylation of EGFR, NF-κB, AKT and p-38 and the intracellular redistribution of p-AKT and PKCα. These effects were impaired by GPR75 antagonism and/or silencing. Accordingly, the inhibition of 20-HETE formation with N-hydroxy-N′-(4-n-butyl-2-methylphenyl) formamidine (HET0016) elicited the opposite effects.ConclusionsThe present results show for the first time the involvement of the 20-HETE-GPR75 receptor in the activation of intracellular signaling known to be stimulated in cell malignant transformations leading to the differentiation of PC-3 cells towards a more aggressive phenotype. Targeting the 20-HETE/GPR75 pathway is a promising and novel approach to interfere with prostate tumor cell malignant progression.  相似文献   

20.
BackgroundNotch activation requires proteolytic cleavage of the receptor by γ-secretase protein complex. Inhibition of Notch receptor activation (e.g. Notch3) with γ-secretase inhibitor is a potential new therapeutic approach for the targeted therapy of non-small cell lung cancer (NSCLC). However, only a few safe and effective γ-secretase inhibitors have been discovered. Evodiamine (EVO), a compound derived from Euodiae Fructus (Chinese name, Wu-Zhu-Yu), exhibits remarkable anti-NSCLC activities. However, the underlying mechanisms of action have yet to be fully elucidated.PurposeWe sought to determine the involvement of Notch3 signaling in the anti-NSCLC effects of EVO, and to explore whether EVO suppressed Notch3 signaling by inhibiting γ-secretase in cultured A549 and H1299 NSCLC cells and in urethane-induced lung cancer FVB mouse model.MethodsCell viability, migration, stemness and cell cycle distribution of EVO were examined by the MTT assay, wound healing assay, soft agar colony assay and flow cytometry analysis, respectively. The binding affinity of EVO and γ-secretase complex was analyzed by molecular docking. Cellular thermal shift assay (CETSA) was performed to study the drug-target interactions in NSCLC cells. Protein levels were determined by Western blotting.ResultsEVO dramatically inhibited cell viability, induced G2/M cell cycle arrest, suppressed cell migration, and reduced stemness in NSCLC cells. Mechanistic studies indicated that EVO prevented the γ-secretase cleavage of Notch3 at the cell surface and hence inhibited Notch3 activation. Moreover, EVO notably reduced tumor growth in the mouse model and inhibited Notch3 activity in the tumors.ConclusionThis study provides new insights into the anti-NSCLC action of EVO, and suggests that suppressing Notch3 signaling by inhibiting γ-secretase is a mechanism of action underlying the anti-NSCLC effect of EVO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号