首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.  相似文献   

2.
Variation in diversification rates is often studied by investigating traits related to species' ecology and life history. Often, however, it is unknown whether these traits evolve gradually or in punctuated bursts during speciation. Using phylogenetic data and species' present-day trait information, we present a novel approach to assessing the mode of character change while accounting for trait-dependent speciation and extinction. Our model, "Binary-State Speciation and Extinction-node enhanced state shift" (BiSSE-ness), estimates both the rate of change occurring along lineages and the probability of change occurring during speciation, as well as independent speciation and extinction rates for each character state. Using simulations, we found that BiSSE-ness is able to distinguish along-lineage and speciational change and accurately estimate the parameters associated with character change and diversification rates. We applied BiSSE-ness to an empirical primate data set and found evidence for along-lineage changes in primate mating systems and social behaviors, whereas shifts in habitat were associated with speciation. In cases where trait changes may be linked to the speciation process itself (e.g., niche-related traits), BiSSE-ness provides a suitable framework with which to simultaneously address questions regarding species diversification and character change.  相似文献   

3.
It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have been used to test for correlations between character states and lineage diversification. Recent work suggests that model‐based tests of state‐dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We describe a simple nonparametric statistical test (“FiSSE”) to assess the effects of a binary character on lineage diversification rates. The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait‐dependent speciation on phylogenies of several hundred tips. The method has low power to detect trait‐dependent extinction but can infer state‐dependent differences in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are problematic for likelihood‐based methods, and we find that FiSSE does not show similarly elevated false positive rates. We suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process‐based models for trait‐dependent diversification.  相似文献   

4.
Statistical analysis of diversification with species traits   总被引:1,自引:0,他引:1  
Testing whether some species traits have a significant effect on diversification rates is central in the assessment of macroevolutionary theories. However, we still lack a powerful method to tackle this objective. I present a new method for the statistical analysis of diversification with species traits. The required data are observations of the traits on recent species, the phylogenetic tree of these species, and reconstructions of ancestral values of the traits. Several traits, either continuous or discrete, and in some cases their interactions, can be analyzed simultaneously. The parameters are estimated by the method of maximum likelihood. The statistical significance of the effects in a model can be tested with likelihood ratio tests. A simulation study showed that past random extinction events do not affect the Type I error rate of the tests, whereas statistical power is decreased, though some power is still kept if the effect of the simulated trait on speciation is strong. The use of the method is illustrated by the analysis of published data on primates. The analysis of these data showed that the apparent overall positive relationship between body mass and species diversity is actually an artifact due to a clade-specific effect. Within each clade the effect of body mass on speciation rate was in fact negative. The present method allows to take both effects (clade and body mass) into account simultaneously.  相似文献   

5.
6.
The power of sexual selection to drive changes in mate recognition traits gives it the potential to be a potent force in speciation. Much of the evidence to support this possibility comes from comparative studies that examine differences in the number of species between clades that apparently differ in the intensity of sexual selection. We argue that more detailed studies are needed, examining extinction rates and other sources of variation in species richness. Typically, investigations of extant natural populations have been too indirect to convincingly conclude speciation by sexual selection. Recent empirical work, however, is beginning to take a more direct approach and rule out confounding variables.  相似文献   

7.
Understanding the origin of diversity is a fundamental problem in biology. Evolutionary diversification has been intensely explored during the last years due to the development of molecular tools and the comparative method. However, most studies are conducted using only information from extant species. This approach probably leads to misleading conclusions, especially because of inaccuracy in the estimation of extinction rates. It is critical to integrate the information generated by extant organisms with the information obtained from the fossil record. Unfortunately, this integrative approach has been seldom performed, and thus, our understanding of the factors fueling diversification is still deficient. Ecological interactions are a main factor shaping evolutionary diversification by influencing speciation and extinction rates. Most attention has focused on the effect of antagonistic interactions on evolutionary diversification. In contrast, the role of mutualistic interactions in shaping diversification has been much less explored. In this study, by combining phylogenetic, neontological, and paleontological information, we show that a facultative mutualistic plant-animal interaction emerging from frugivory and seed dispersal has most likely contributed to the diversification of our own lineage, the primates. We compiled diet and seed dispersal ability in 381 extant and 556 extinct primates. Using well-established molecular phylogenies, we demonstrated that mutualistic extant primates had higher speciation rates, lower extinction rates, and thereby higher diversification rates than nonmutualistic ones. Similarly, mutualistic fossil primates had higher geological durations and smaller per capita rates of extinction than nonmutualistic ones. As a mechanism underlying this pattern, we found that mutualistic extinct and extant primates have significantly larger geographic ranges, which promotes diversification by hampering extinction and increasing geographic speciation. All these outcomes together strongly suggest that the establishment of a facultative mutualism with plants has greatly benefited primate evolution and fueled its taxonomic diversification.  相似文献   

8.
Abstract In this article we propose a new framework for studying adaptive radiations in the context of diversity-dependent diversification. Diversity dependence causes diversification to decelerate at the end of an adaptive radiation but also plays a key role in the initial pulse of diversification. In particular, key innovations (which in our definition include novel traits as well as new environments) may cause decoupling of the diversity-dependent dynamics of the innovative clade from the diversity-dependent dynamics of its ancestral clade. We present a likelihood-based inference method to test for decoupling of diversity dependence using molecular phylogenies. The method, which can handle incomplete phylogenies, identifies when the decoupling took place and which diversification parameters are affected. We illustrate our approach by applying it to the molecular phylogeny of the North American clade of the legume tribe Psoraleeae (47 extant species, of which 4 are missing). Two diversification rate shifts were previously identified for this clade; our analysis shows that the first, positive shift can be associated with decoupling of two Pediomelum subgenera from the other Psoraleeae lineages, while we argue that the second, negative shift can be attributed to speciation being protracted. The latter explanation yields nonzero extinction rates, in contrast to previous findings. Our framework offers a new perspective on macroevolution: new environments and novel traits (ecological opportunity) and diversity dependence (ecological limits) cannot be considered separately.  相似文献   

9.
Understanding the processes that underlie biodiversity requires insight into the evolutionary history of the taxa involved. Accurate estimation of speciation, extinction, and diversification rates is a prerequisite for gaining this insight. Here, we develop a stochastic birth–death model of speciation and extinction that predicts the probability distribution of both extinct and extant numbers of species in a clade. We present two estimation methods based on this model given data on the number of extinct species (from the fossil record) and extant species (from diversity assessments): a multivariate method of moments approach and a maximum-likelihood approach. We show that, except for some special cases, the two estimation methods produce very similar estimates. This is convenient, because the usually preferred maximum-likelihood approach is much more computationally demanding, so the method of moments can serve as a proxy. Furthermore, we introduce a correction for possible bias that can arise by the mere fact that we will normally only consider extant clades. We find that in some cases the bias correction affects the estimates profoundly. Finally, we show how our model can be extended to incorporate incomplete preservation. Preservation rates can, however, not be reliably estimated on the basis of numbers of extant and extinct species alone.  相似文献   

10.
The absence of an adequate fossil record can hinder understanding the process of diversification that underlies the evolutionary history of a given group. In such cases, investigators have used ultrametric trees derived from molecular data from extant taxa to gain insights into processes of speciation and extinction over time. Inadequate taxon sampling, however, impairs such inferences. In this study, we use simulations to investigate the effect of incomplete taxon sampling on the accumulation of lineages through time for a clade of mushroom-forming fungi, the Hebelomateae. To achieve complete taxon sampling, we use a new Bayesian approach that incorporates substitute lineages to estimate diversification rates. Unlike many studies of animals and plants, we find no evidence of a slowdown in speciation. This indicates the Hebelomateae has not undergone an adaptive radiation. Rather, these fungi have evolved under a relatively constant rate of diversification since their most recent common ancestor, which we date back to the Eocene. The estimated net diversification rate (0.08-0.19 spp./lineage/Ma) is comparable with that of many plants and animals. We suggest that continuous diversification in the Hebelomateae has been facilitated by climatic and vegetation changes throughout the Cenozoic. We also caution against modeling multiple genes as a single partition when performing phylogenetic dating analyses.  相似文献   

11.
Large complete species-level molecular phylogenies can provide the most direct information about the macroevolutionary history of clades having poor fossil records. However, extinction will ultimately erode evidence of pulses of rapid speciation in the deep past. Assessment of how well, and for how long, phylogenies retain the signature of such pulses has hitherto been based on a--probably untenable--model of ongoing diversity-independent diversification. Here, we develop two new tests for changes in diversification 'rules' and evaluate their power to detect sudden increases in equilibrium diversity in clades simulated with diversity-dependent speciation and extinction rates. Pulses of diversification are only detected easily if they occurred recently and if the rate of species turnover at equilibrium is low; rates reported for fossil mammals suggest that the power to detect a doubling of species diversity falls to 50 per cent after less than 50 Myr even with a perfect phylogeny of extant species. Extinction does eventually draw a veil over past dynamics, suggesting that some questions are beyond the limits of inference, but sudden clade-wide pulses of speciation can be detected after many millions of years, even when overall diversity is constrained. Applying our methods to existing phylogenies of mammals and angiosperms identifies intervals of elevated diversification in each.  相似文献   

12.
Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.  相似文献   

13.
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, "explosive early" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages.  相似文献   

14.
Speciation is not instantaneous but takes time. The protracted birth–death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. 2014 ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation‐initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.  相似文献   

15.
Evidence is accumulating that species traits can spur their evolutionary diversification by influencing niche shifts, range expansions, and extinction risk. Previous work has shown that larger brains (relative to body size) facilitate niche shifts and range expansions by enhancing behavioral plasticity but whether larger brains also promote evolutionary diversification is currently backed by insufficient evidence. We addressed this gap by combining a brain size dataset for >1900 avian species worldwide with estimates of diversification rates based on two conceptually different phylogenetic‐based approaches. We found consistent evidence that lineages with larger brains (relative to body size) have diversified faster than lineages with relatively smaller brains. The best supported trait‐dependent model suggests that brain size primarily affects diversification rates by increasing speciation rather than decreasing extinction rates. In addition, we found that the effect of relatively brain size on species‐level diversification rate is additive to the effect of other intrinsic and extrinsic factors. Altogether, our results highlight the importance of brain size as an important factor in evolution and reinforce the view that intrinsic features of species have the potential to influence the pace of evolution.  相似文献   

16.
Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum‐likelihood (ML) method to detect diversity‐dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity‐dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co‐occur locally. Here, we explore whether this ML method based on the nonspatial diversity‐dependence model can detect local diversity‐dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity‐dependence) are low, and the power to detect diversity‐dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity‐dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity‐dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously.  相似文献   

17.
Evolutionary biologists have long debated the relative influence of species selection on evolutionary patterns. As a test, we apply a statistical phylogenetic approach to evaluate the influence of traits related to species distribution and life-history characteristics on patterns of diversification in salamanders. We use independent contrasts to test trait-mediated diversification while accommodating phylogenetic uncertainty in relationships among all salamander families. Using a neontological data set, we find several species-level traits to be variable, heritable, and associated with differential success (i.e., higher diversification rates) at higher taxonomic categories. Specifically, the macroecological trait of small geographic-range size is strongly correlated with a higher rate of net diversification. We further consider the role that plasticity in life-history traits appears to fulfill in macroevolutionary processes of lineage divergence and durability. We find that pedotypy--wherein some, but not all, organisms of a species mature in the gilled form without metamorphosing-is also associated with higher net diversification rate than is the absence of developmental plasticity. Often dismissed as an insignificant process in evolution, we provide direct evidence for the role of species selection in lineage diversification of salamanders.  相似文献   

18.
The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22–2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13–12 Ma and 4–3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions.  相似文献   

19.
The tree of life is highly asymmetrical in its clade wise species richness, and this has often been attributed to variation in diversification rates either across time or lineages. Variations across lineages are usually associated with traits that increase lineage diversification. Certain traits can also hinder diversification by increasing extinction, and such traits are called evolutionary dead ends. Ecological specialization has usually been considered as an evolutionary dead end. However, recent analyses of specializations along single axes have provided mixed support for this model. Here, we test if fossoriality, a trait that forces specialization at multiple axes, acts as an evolutionary dead end in squamates (lizards and snakes) using recently developed phylogenetic comparative methods. We show that fossoriality is an evolutionary dead end in snakes but not in lizards. Fossorial snakes exhibit reduced speciation and increased extinction compared to nonfossorial snakes. Our analysis also indicates that transition rates from fossoriality to nonfossoriality in snakes are significantly lower than transition rates from nonfossoriality to fossoriality. Overall our results suggest that broad‐scale ecological interactions that lead to specialization at multiple axes limit diversification.  相似文献   

20.
Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net species diversification rates or underlying speciation and extinction rates for legume clades, to test whether among-lineage variation in diversification rates deviates from null expectations, or to locate species diversification rate shifts on specific branches of the legume phylogenetic tree. In this study, time-calibrated phylogenetic trees for a set of species-rich legume clades – Calliandra, Indigofereae, Lupinus, Mimosa and Robinieae – and for the legume family as a whole, are used to explore how we might approach these questions. These clades are analysed using recently developed maximum likelihood and Bayesian methods to detect species diversification rate shifts and test for among-lineage variation in speciation, extinction and net diversification rates. Possible explanations for rate shifts in terms of extrinsic factors and/or intrinsic trait evolution are discussed. In addition, several methodological issues and limitations associated with these analyses are highlighted emphasizing the potential to improve our understanding of the evolutionary dynamics of legume diversification by using much more densely sampled phylogenetic trees that integrate information across broad taxonomic, geographical and temporal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号