首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In Chilean evergreen temperate forest, fern species of the genus Blechnum occur in diverse microhabitats in a light gradient. We hypothesized that differences in the habitat preferences of three co-occurring Blechnum species would be associated with differences in the magnitude of responses of light capture [chlorophyll (Chl) content] and use (photosynthetic capacity and performance) to light availability. We measured the abundance, chlorophyll content, photosynthetic capacity (A), and photosynthetic performance (chlorophyll fluorescence of photosystems I and II) of juvenile individuals of each species growing in different light levels in the field. While Blechnum magellanicum covers a broad light environments range, B. mochaenum is restricted to shade, and B. penna-marina occupies full sun sites. Despite significant interspecific differences in average total chlorophyll content, this trait did not differ among species along the light gradient. There was significant interspecific variation in both the mean value and the plasticity of Chl a:Chl b ratio and A to light availability. While B. penna-marina showed a flatter reaction norm (lower response) of Chl a:Chl b ratio to light availability than its two congeners, B. mochaenum showed a lower response of A to light availability. B. penna-marina and B. magellanicum individuals from open sites had higher light saturation points of the electron transport rate (ETR) of both photosystems (ETRLSP I and II) and photochemical quenching (qL and NA) than the shade restricted B. mochaenum. Additionally, non-photochemical quenching values for both photosystems (NPQ and ND) were higher in ferns species occurring in shaded sites. The adjustment of the photosynthetic capacity and performance to light availability appears to be an important mechanism of acclimation in these three Blechnum species that differ in their habitat preferences across a light gradient.  相似文献   

2.
Saldaña A  Gianoli E  Lusk CH 《Oecologia》2005,145(2):252-257
In Chilean evergreen temperate forest, fern species of the genus Blechnum occur in diverse microhabitats ranging from large gaps to heavily shaded understoreys. We hypothesised that differences in the ecological breadth of three co-occurring Blechnum species would be associated with differences in magnitude of ecophysiological responses to light availability. We quantified the field distribution of each species in relation to diffuse light availability (% canopy openness), and measured in situ variation in photosynthetic capacity (A), dark respiration (R (d)) and specific leaf area (SLA) across the light gradient. The response of SLA of each species was also evaluated in a common garden in two light conditions (understorey and forest edge). The three Blechnum species differed significantly in the range of light environments occupied (breadth: B. chilense > B. hastatum > B. mochaenum). Despite significant interspecific differences in average A and R (d), the response of these traits to light availability did not differ among species. However, there was significant interspecific variation in both the mean value and the plasticity of SLA to light availability, the species with least ecological breadth (B. mochaenum) showing a flatter reaction norm (lower response) than its two congeners. This pattern was also found in the common garden experiment. The adjustment of leaf morphology (SLA) to light availability appears to be an important mechanism of acclimation in these Blechnum species. The narrow range of light environments occupied by B. mochaenum may be at least partly attributable to its inability to display phenotypic plasticity in SLA to changes in light availability.  相似文献   

3.
Unlike other species of the genus Blechnum, the fern Blechnum chilense occurs in a wide range of habitats in Chilean temperate rainforest, from shaded forest understories to abandoned clearings and large gaps. We asked if contrasting light environments can exert differential selection on ecophysiological traits of B. chilense. We measured phenotypic selection on functional traits related to carbon gain: photosynthetic capacity (A max), dark respiration rate (R d), water use efficiency (WUE), leaf size and leaf thickness in populations growing in gaps and understorey environments. We assessed survival until reproductive stage and fecundity (sporangia production) as fitness components. In order to determine the potential evolutionary response of traits under selection, we estimated the genetic variation of these traits from clonally propagated individuals in common garden experiments. In gaps, survival of B. chilense was positively correlated with WUE and negatively correlated with leaf size. In contrast, survival in shaded understories was positively correlated with leaf size. We found positive directional fecundity selection on WUE in gaps population. In understories, ferns of lower R d and greater leaf size showed greater fecundity. Thus, whereas control of water loss was optimized in gaps, light capture and net carbon balance were optimized in shaded understories. We found a significant genetic component of variation in WUE, R d and leaf size. This study shows the potential for evolutionary responses to heterogeneous light environments in functional traits of B. chilense, a unique fern species able to occupy a broad successional niche in Chilean temperate rainforest.  相似文献   

4.
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-massN mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass, R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits. Received: 23 May 1997 / Accepted: 16 December 1997  相似文献   

5.
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one.  相似文献   

6.
  • Forest understorey plants are sensitive to light availability, and different species groups can respond differently to changing light conditions. A plant trait tightly linked to light capture is specific leaf area (SLA). Studies considering the relative role of within‐ and among‐species SLA variation across different species groups (e.g. specialists and generalists) are rarely implemented in temperate forest understories varying in their maturity.
  • We examined community‐level SLA patterns of beech forest understories along a light availability gradient, and for habitat specialists and generalists separately. We then disentangled and quantified the contribution of intraspecific trait variability and interspecific trait differences in shaping SLA patterns.
  • We revealed that the increase in community‐level SLA with decreasing light availability was primarily driven by beech forest specialists (and, to a lesser extent, by forest generalists), and this pattern was mainly determined by specialists’ high intraspecific variability. Community‐level SLA was therefore formed by different responses at different organizational levels, i.e. within and among species, and for separate species groups.
  • This study provides insights into factors shaping the shade tolerance strategy in beech forest understorey plants; specialists persistence under putative less favourable conditions (i.e. high irradiation) may be fostered by their ability to adjust their light capture strategies intraspecifically.
  相似文献   

7.
Question: Are differences in microhabitat preferences of co‐occurring epiphytic Hymenophyllaceae species (filmy ferns) correlated with differences in ecophysiological responses to light availability and humidity in the host tree? Location: The Andean foothills in south‐central Chile. Methods: We evaluated the distribution pattern of nine filmy fern species in microhabitats that differ in light availability and humidity in four host tree species. A DCA was developed to assess Hymenophyllaceae species microhabitat preference in terms of canopy openness (CO) and relative humidity. We assessed whether differences in chlorophyll content, maximum photochemical efficiency (Fv/Fm), photosynthetic capacity (Amax), evapotranspiration (E) and instantaneous water use efficiency (WUE) are consistent with any pattern. Results: CO and relative humidity differed significantly with height in the host trees. While CO increased with height in a host tree, relative humidity decreased. DCA analysis showed that filmy fern species distribution within and among trees was mainly explained by the relative humidity of the microhabitat. Chlorophyll content, chlorophyll a/b ratio, Amax and E differed significantly among filmy fern species. Amax and E were correlated with axis 1 scores from the DCA analysis. Conclusions: The vertical distribution and abundance of filmy fern species in Chilean temperate rain forest seems to be closely related to the different microhabitats offered by host trees. This pattern may reflect interspecific differences in ecophysiological traits related both to light availability and humidity. Our results suggest that humidity is the main environmental factor driving functional responses and habitat preferences of these filmy fern species.  相似文献   

8.
Robin L. Chazdon 《Oecologia》1992,92(4):586-595
Summary Photosynthetic plasticity of two congeneric shrub species growing under natural field conditions was compared along transects spanning two canopy gaps in a Costa Rican rain forest. Piper arieianum is a shadetolerant species common in successional and mature forests, whereas P. sancti-felicis is a pioneer species abundant in abandoned clearings and large gaps. Twenty potted cuttings of each species were placed at regular intervals along two east-west transects crossing a small branch-fall gap and a large tree-fall gap. Along the transects, the percent of full sun photon flux density varied from less than 2% to 45%. After six months of growth under these conditions, leaves were monitored for incident photon flux density, photographic measures of light availability, photosynthetic capacity (Amax), leaf nitrogen content, leaf chlorophyll content, and specific leaf mass. Although both species demonstrated considerable plasticity in Amax across gap transects, P. sancti-felicis leaves had a superior capacity to track closely variation in light availability, particularly in the larger gap. For regressions of Amax on measures of light availability, P. sancti-felicis consistently showed a 3.5 to 5-fold higher coefficient of determination (R2) and a 3 to 4-fold higher slope than P. arieianum. In both species leaf nitrogen content per leaf area increased significantly with light availability, although P. sancti-felicis, again, showed a much stronger relationship between these variables. Across the transects, mean chlorophyll content per unit leaf area did not differ significantly between the species, whereas mean chlorophyll content per unit leaf dry mass was 3-times greater in leaves of P. sancti-felicis. Piper arieianum exhibited highly significant increases in chlorophyll a:b ratio with increased light availability, whereas P. sancti-felicis lacked significant variation in this trait across a gradient of light availability. Mean specific leaf mass did not vary significantly between species across the gap transects. The nature of the light acclimatory response differs quantitatively and qualitatively between these species. An important constraint on light acclimation of the shade-tolerant P. arieianum is its inability to increase photosynthetic nitrogen-use efficiency under conditions of high light availability. The lack of plasticity in chlorophyll a:b ratios does not restrict light acclimation of Amax in P. sancti-felicis. Leaves of P. arieianum exhibited symptoms of chronic photoinhibition in exposed microsites within the large gap. Species differences in the capacity to finely adjust Amax across a wide range of light conditions may be attributed to their maximum growth potential. Light acclimation in species with low maximum growth potential may be constrained at the cellular level by rates of protein and chlorophyll synthesis and at the whole-plant level by low maximum rates of uptake and supply of nutrients and water. For P. arieianum, restriction of photosynthetic plasticity is likely to limit competitive abilities of plants in high-light conditions of large gaps and clearings, whereas observed habitat restrictions for P. sancti-felicis do not appear to depend upon the highly-developed capacity for adjustment of Amax observed in this species.  相似文献   

9.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

10.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

11.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

12.
In order to understand better the ecology of the temperate species Quercus petraea and the sub-Mediterranean species Quercus pyrenaica, two deciduous oaks, seedlings were raised in two contrasting light environments (SH, 5.3% full sunlight vs. HL, 70% full sunlight) for 2 years, and a subset of the SH seedlings were transferred to HL (SH–HL) in the summer of the second year. We predicted that Q. pyrenaica would behave more as a stress-tolerant species, with lower specific leaf area (SLA), allocation to leaf mass, and growth rate and less responsiveness to light in these metrics, than Q. petraea, presumed to be more competitive when resources, especially light and water, are abundant. Seedlings of Q. petraea had larger leaves with higher SLA, and exhibited a greater relative growth rate (RGR) in both SH and HL. They also displayed a higher proportion of biomass in stems (SMF), and a lower root to shoot ratio (R/S) in HL than those of Q. pyrenaica, which sprouted profusely, and had higher rates of photosynthesis (An) and stomatal conductance (gwv), but lower whole-plant net assimilation rate (NAR). On exposure to a sudden increase in light, SH–HL seedlings of both species showed a short period of photoinhibition, but fully acclimated photosynthetic features within 46 days after transference; height, main stem diameter, RGR and NAR all increased at the end of the experiment compared to SH seedlings, with these increases more pronounced in Q. petraea. Observed differences in traits and responses to light confirmed a contrasting ecology at the seedling stage in Q. petraea and Q. pyrenaica in consonance with differences in their overall distribution. We discuss how the characteristics of Q. petraea may limit the availability of suitable regeneration niches to microsites of high-resource availability in marginal populations of Mediterranean climate, with potential negative consequences for its recruitment under predicted climatic changes.  相似文献   

13.
桉树-乡土树种混交林在提高林分生产力和生态系统功能等方面具有较大潜力。该研究以南亚热带4种桉树-乡土树种混交林(桉树与乡土树种混交比例分别为5:5、6:4、7:3、8:2)和桉树纯林为研究对象,研究了3种优势乡土树种华润楠(Machilus chinensis)、阴香(Cinnamomum burmannii)、灰木莲(Manglietia glauca)和速生树种尾叶桉(Eucalyptus urophylla)的叶片生理、结构和化学性状在不同比例混交林中的差异。结果表明,4优势造林树种的叶片性状存在明显的种间差异,其中灰木莲的比叶面积(SLA)、光合磷利用效率(PPUE)、单位质量叶片最大光合速率(Amass)和蒸腾速率(Tmass)以及叶片养分含量最高,说明灰木莲采取资源获取型的生态策略;尾叶桉的SLA、Amass、Tmass及叶片养分含量最低,但具有最高的PPUE,说明尾叶桉兼顾了资源获取型和保守型的物种特征。灰木莲与尾叶桉在SLA、Amass、Tmass  相似文献   

14.
Invasive species are hypothesized to be more plastic than co‐occurring native congeners, and variation in plasticity among invasive populations is predicted to facilitate invasion of new habitats. To explore the invasive ability of Bidens frondosa, we compared the plastic responses to water and nitrogen addition of the invasive B. frondosa in China with the co‐occurring native congener B. tripartita, as well as among B. frondosa populations. The invasive plant performed better and showed higher phenotypic plasticity to water and nitrogen addition than the native. In addition, variations in performance and phenotypic plasticity were observed among the invasive populations. The biomass of the HN (Henan province) population increased more than that of other populations in response to nitrogen addition. The specific leaf area (SLA) of the GX (Guangxi province) population increased, while the SLA of the HN population decreased, and the HB (Hebei province) and EZ (Hubei province) populations showed no change in response to nitrogen addition. The observed higher phenotypic plasticity of B. frondosa relative to B. tripartita, and the observed variation in plasticity among B. frondosa populations may explain the invasiveness of this species. Predicted future increases in precipitation and atmospheric N deposition may further increase the invasiveness of B. frondosa.  相似文献   

15.
Photosynthesis-nitrogen relations in Amazonian tree species   总被引:18,自引:0,他引:18  
The relationships between leaf nitrogen (N), specific leaf area (SLA) (an inverse index of leaf thickness or density), and photosynthetic capacity (Amax) were studied in 23 Amazonian tree species to characterize scaling in these properties among natural populations of leaves of different ages and light microenvironments, and to examine how variation within species in N and SLA can influence the expression of the Amax-to-N relationship on mass versus area bases. The slope of the Amax-N relationship, change in A per change in N (mol CO2 gN-1 s-1), was consistently greater, by as much as 300%, when both measures were expressed on mass rather than area bases. The x-intercept of this relationship (N-compensation point) was generally positive on a mass but not an area basis. In this paper we address the causes and implications of such differences. Significant linear relationships (p<0.05) between mass-based leaf N (Nmass) and SLA were observed in 12 species and all 23 regressions had positive slopes. In 13 species, mass-based Amax (Amass) was positively related (p<0.05) with SLA. These patterns reflect the concurrent decline in Nmass and SLA with increasing leaf age. Significant (p<0.05) relationships between area-based leaf N (Narea) and SLA were observed in 18 species. In this case, all relationships had negative slopes. Taken collectively, and consistent in all species, as SLA decreased (leaves become thicker) across increasing leaf age and light gradients, Nmass also decreased, but proportionally more slowly, such that Narea increased. Due to the linear dependence of Amass on Nmass and a negative 4-intercept, thicker leaves (low SLA) therefore tend, on average, to have lower Nmass and Amass but higher Narea than thinner leaves. This tendency towards decreasing Amass with increasing Narea, resulting in a lower slope of the Amax-N relationship on an area than mass basis in 16 of 17 species where both were significant. For the sole species exception (higher area than mass-based slope) variation in Narea was related to variation in Nmass and not in SLA, and thus, these data are also consistent with this explanation. The relations between N, SLA and Amax explain how the rate of change in Amax per change in N can vary three-fold depending on whether a mass or area mode of expression is used.  相似文献   

16.
Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (N A) and photosynthetic capacity (A A) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (M A) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, M A and N A plasticity decreased with increasing leaf age, but the change in A A plasticity was less suggesting a certain re-acclimation of A A to altered light. In deciduous woody species, M A and N A gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, the trait gradients increased constantly with increasing leaf age. In forbs, N A plasticity increased, while in grasses, N A plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period.  相似文献   

17.
Ming Dong 《Oecologia》1995,101(3):282-288
Morphological responses to light and effects of physiological integration on local morphological responses are examined for Hydrocotyle vulgaris and Lamiastrum galeobdolon, stoloniferous herbs from open fenlands and forest understoreys, respectively. An assessment was made of whether these clonal herbs of similar morphology but from contrasting habitats show different foraging behaviour for light. In a garden experiment, the plants wer subjected to four levels of light availability, and to a split treatment in which the primary stolons grew along the border of patches of the two intermediate light levels. In this treatment the plant parts on opposite sides of the primary stolons were in contrasting light environments. Petiole extension was more responsive to light conditions in Hydrocotyle than in Lamiastrum, while the opposite was true for leaf area. Both species showed similar responses in stolon internode length and specific leaf area (SLA). Integration did not significantly modify local responses in stolon internode length in either species. Local responses in petiole length, leaf area and SLA of Hydrocotyle ramets were not significantly affected by physiological integration, except for the SLA of ramets in high light which was evened out by integration. In contrast, in Lamiastrum, local responses in petiole length, leaf area and SLA of many ramets in the shaded and/or light patch were significantly evened out by integration. As a result, interconnected ramets in patches of different light supply developed very different morphologies in Hydrocotyle, but not in Lamiastrum. The results indicate that the species differed in ramet morphological responses to light intensity as well as in effects of integration on local morphological responses, and suggest that species from different habitats show different foraging behaviour for light.  相似文献   

18.
Adaptive values of plasticity in Iris pumila leaf traits (morphological: SLA, specific leaf area; anatomical: SD, stomatal density; LT, leaf thickness; VBN, vascular bundle number; SW, sclerenchyma width; CW, cuticle width, and physiological: ChlT, total chlorophyll concentration; ChlA/B, chlorophyll a/b ratio) were tested at three irradiance levels in a growth-room. Siblings from 28 full-sib families from an open dune site and a woodland understory responded similarly to variation in light availability: SLA gradually increased, while anatomical and physiological traits decreased with light reduction. In the Dune population, standardized linear selection gradients were significant for SLA and ChlT at high light, VBN along the entire light gradient, SW at high- and low-, and ChlA/B at low-irradiance. In the Woods population, the significant standardized linear selection gradients were observed for SLA and LT at low- and VBN at both high- and low-irradiance. A significant nonlinear selection gradient was recorded for SD and LT at medium irradiance. Comparisons of the plastic responses to each light quantity with the phenotypes favored by selection in that environments revealed that only an increased SLA value at low light in the Woods population was ecologically significant (adaptive). In the Dune population, SD and VBN entailed plasticity costs at low irradiance, while a cost of homeostasis was recognized for ChlT and ChlA/B at medium light, SD and CW at high- and low-, and SLA at high- and medium-light level. In the shaded population, CW and ChlA/B incurred plasticity costs at high irradiance, while for ChlT plasticity costs appeared under medium- and low-light conditions. In all leaf traits, genetic variation for plasticity was statistically undetectable. Genetic correlations between these traits were mostly insignificant, implying that they possess a capability for relatively independent evolution by natural selection across different light environments.  相似文献   

19.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

20.
This study characterized morphological and physiological responses of two Malus species to exogenous abscisic acid (ABA) application under both well-watered and drought-stressed conditions. Exogenous ABA was sprayed onto the leaves of potted 1-year-old seedlings of M. sieversii and M. hupehensis, originated from regions with low annual rainfall and high annual rainfall, respectively. The results demonstrated that exogenous ABA application significantly decreased height growth (H), total biomass (TB), total leaf area (LA), net photosynthesis (A) and stomatal conductance (g s), and significantly increased root/shoot ratio (RS), specific leaf area (SLA), endogenous ABA concentration, water use efficiency (WUE) and carbon isotope composition (δ13C) under both well-watered and drought-stressed conditions. However, distinct interspecific differences were found in ABA-induced morphological and physiological responses. Compared with M. hupehensis, M. sieversii was more responsive to exogenous ABA application, resulting in larger decreases in H, LA, A and g s, and larger increases in RS, SLA, WUEL, WUEi, ABA and δ13C. These results suggest strong evidence for different maintenance of fitness under stressful conditions between species of Malus. In addition, application of exogenous ABA appears to enhance the tolerance of two Malus species to drought-stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号