首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.  相似文献   

2.
The effect of increasing concentrations of Al2(SO4)3 in situ on the content of starch, sugars and activity behaviour of enzymes related to their metabolism were studied in growing seedlings of two rice cvs. Malviya-36 and Pant-12 in sand cultures. Al2(SO4)3 levels of 80 and 160 μM in the growth medium caused an increase in the contents of starch, total sugars as well as reducing sugars in roots as well as shoots of the rice seedlings during a 5–20 days growth period. The activities of the enzymes of starch hydrolysis α-amylase, β-amylase and starch phosphorylase declined in Al-exposed seedlings, whereas the activities of sucrose hydrolyzing enzymes sucrose synthase and acid invertase increased in the seedlings due to Al3+ treatment. The enzyme of sucrose synthesis, sucrose phosphate synthase showed decreased activity in Al3+ treated seedlings compared to controls. Results suggest that Al3+ toxicity in rice seedlings impairs the metabolism of starch and sugars and favours the accumulation of hexoses by enhancing the activities of sucrose hydrolyzing enzymes.  相似文献   

3.
Carbohydrate metabolism in growing rice seedlings under arsenic toxicity   总被引:7,自引:0,他引:7  
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity.  相似文献   

4.
The effects of increasing concentrations of nickel sulfate, NiSO4 (200 and 400 μM) in the growth medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism were examined in seedlings of the two Indica rice cvs. Malviya-36 and Pant-12. During a 5–20 day growth period of seedlings in sand cultures, with Ni treatment, no definite pattern of alteration in starch level could be observed in the seedlings. In both roots and shoots of the seedlings Ni treatment led to a significant decrease in activities of starch degrading enzymes α-amylase, β-amylase, whereas starch phosphorylase activity increased. The contents of reducing, non-reducing, and total sugars increased in Ni-treated rice seedlings with a concomitant increase in the activities of sucrose degrading enzymes acid invertase and sucrose synthase. However, the activity of sucrose synthesizing enzyme sucrose phosphate synthase declined. These results suggest that Ni toxicity in rice seedlings causes marked perturbation in metabolism of carbohydrates leading to increased accumulation of soluble sugars. Such perturbation could serve as a limiting factor for growth of rice seedlings in Ni polluted environments and accumulating soluble sugars could serve as compatible solutes in the cells under Ni toxicity conditions.  相似文献   

5.
The response to moderate salt stress of a Scytonema species isolated from a soil crust in the arid region of central Australia was studied. An increase in intracellular trehalose and sucrose concentrations was detected by NMR and HPLC analysis following salt stress, maximal amounts being produced by exposure to 150 mM NaCl after 48 h. When the organism was subsequently returned to normal growth conditions, the cellular concentrations of these solutes decreased. The biosynthesis of trehalose and sucrose was studied and found, in both cases, to involve both sugar phosphate synthase and phosphatase enzymes. The combined synthase activities and the individual phosphatase activities in cell extracts were increased by salt stress. Trehalose phosphorylase was the only catabolic enzyme detected for trehalose; neither trehalase nor phosphotrehalase activities could be detected. This is the first report of trehalose phosphorylase activity in cyanobacteria. Both trehalose and sucrose phosphorylase activities increased in salt-stressed cells, whereas the activity of invertase did not change.  相似文献   

6.
Bamboo is one of the fastest growing plants in the world, but their shoot buds develop very slowly. Information about the sugar storage and metabolism during the shoot growth is lacking. In the present study, we determined the activity of sucrose and starch metabolizing enzymes during the developmental period of Fargesia yunnanensis from shoot buds to the young culms that have achieved their full height. The soluble sugars and starch contents were also determined and analyzed in shoot buds and shoots at different developmental stages. The results showed that there were higher sucrose contents in shoot buds than shoots, which coincides with the sweeter taste of shoot buds. As the shoot buds sprouted out of the ground, the starch and sucrose were depleted sharply. Coupled with this, the activity of soluble acid invertase (SAI), cell wall-bound invertase (CWI), sucrose synthase at cleavage direction (SUSYC) and starch phosphorylase (STP) increased significantly in the rapidly elongating internodes. These enzymes dominated the rapid elongation of internodes. The activities of SAI, CWI, SUSYC and STP and adenosine diphosphate-glucose pyrophosphorylase were higher as compared to other enzymes in the shoot buds, but were far lower than those in the developing shoots. The slow growth of shoot buds was correlated with the low activity of these enzymes. These results complement our understanding of the physiological differences between shoot buds and elongating shoots and ascertain the physiological mechanism for the rapid growth of bamboo shoots.  相似文献   

7.
The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress. Two relatively salt-alkaline tolerant (Changbai 9) and sensitive (Jinongda 138) rice cultivars, grown hydroponically, were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution. The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated. The results showed that the contents of sucrose, fructose, and glucose in the leaves and roots increased under salt-alkaline stress. Starch content increased in the leaves but decreased in the roots under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, and ADP-glucose pyrophosphorylase increased whereas the activities of neutral invertase and acid invertase decreased in the leaves under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, neutral invertase, and acid invertase increased in the roots under salt-alkaline stress. In conclusion, salt-alkaline stress caused the accumulation of photosynthetic assimilates in the leaves and decreased assimilation export to the roots.  相似文献   

8.
The effect of arsenate with or without phosphate on the growth and sugar metabolism in rice seedlings cv. MTU 1010 was studied. Arsenate was found to be more toxic for root growth than shoot growth and water content of the seedlings gradually decreased with increasing concentrations. Arsenate exposure at 20 μM and 100 μM resulted in an increase in reducing sugar content and decrease in non-reducing sugar content. There was a small increase in starch content, the activity of starch phosphorylase was increased but α-amylase activity was found to be decreased. Arsenate toxicity also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose degrading enzymes viz., acid invertase and sucrose synthase were increased whereas, the activity of sucrose synthesizing enzyme, viz. sucrose phosphate synthase declined. The combined application of arsenate with phosphate exhibited significant alterations of all the parameters tested under the purview of arsenate treatment alone which was congenial to better growth and efficient sugar metabolism in rice seedlings. Thus, the use of phosphorus enriched fertilizers may serve to ensure the production of healthy rice plants in arsenic contaminated soils.  相似文献   

9.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

10.
套作大豆苗期茎秆纤维素合成代谢与抗倒性的关系   总被引:1,自引:1,他引:0  
为从茎秆强度的角度研究套作大豆苗期对荫蔽胁迫的响应及耐荫抗倒机制,采用耐荫性不同的3个大豆材料,在玉米大豆套作和单作两种种植模式下,对茎秆的纤维素、可溶性糖、蔗糖、淀粉含量及蔗糖代谢中关键酶活性以及茎秆抗折力、抗倒伏指数等进行测定,研究它们与套作大豆苗期倒伏的关系.套作大豆苗期倒伏严重,茎秆抗折力、抗倒伏指数、纤维素、可溶性糖、蔗糖、淀粉含量和相关酶活性均显著低于单作.不同大豆材料受套作荫蔽影响程度不同,强耐荫性大豆南豆12茎秆抗折力降低幅度最小,在套作环境下其茎秆抗折力、抗倒伏指数大,纤维素、可溶性糖、蔗糖、淀粉含量高,酶活性强.相关分析表明: 套作大豆苗期茎秆糖含量均与抗折力呈极显著正相关,与倒伏率呈极显著负相关;蔗糖含量与蔗糖磷酸合酶(SPS)、蔗糖合酶(SS)、中性转化酶(NI)活性呈极显著正相关,与酸性转化酶(AI)活性相关性不显著;纤维素含量与SPS、SS呈极显著正相关,与NI呈显著正相关,与AI相关性不显著.套作环境下,强耐荫性大豆苗期茎秆中较高的SPS、SS活性是其维持高蔗糖和纤维素含量的酶学基础,而高纤维素含量有利于提高茎秆强度,进而增强其抗倒伏能力.本研究应用玉米大豆套作种植系统,从苗期抗倒角度,探明了光环境对不同基因型大豆茎秆纤维素代谢的影响机制,为下一步筛选耐荫抗倒大豆品种提供了理论依据.  相似文献   

11.
NaCl胁迫下棉花体内 Na~+ 、K~+分布与耐盐性   总被引:9,自引:2,他引:7  
采用盐化土壤方法 ,选择苗期耐盐性较强的陆地棉品种枝棉 3号和中棉所 1 9及耐盐性较弱的品种泗棉 2号和苏棉 1 2号 ,研究了盐胁迫下棉苗体内 Na+、K+的运输和分配与耐盐性的关系。结果表明 ,耐盐品种根系具有一定的截留 Na+作用。棉花地上部盐分器官水平上的区域化分布特征明显 :2 0 0 mmol/L Na Cl胁迫下 ,枝棉 3号叶片中的 Na+含量显著低于泗棉 2号 ,茎及叶柄中的 Na+含量显著高于泗棉 2号 ;棉株地上部茎、叶柄、叶片中的 Na+含量分别由下而上逐渐减小 ,相同节位的茎、叶柄中的 Na+含量大于叶片 ,枝棉 3号更显著。1 0 0 mmol/L和 1 50 mmol/L Na Cl胁迫下 ,枝棉 3号和中棉所 1 9K+/Na+显著高于泗棉 2号和苏棉 1 2号。Na+在茎和叶柄中滞留和积累 ,根中的 K+向地上部选择性运输 ,以维持叶片中较高的 K+/Na+,是棉花耐盐性的一个重要特点  相似文献   

12.
以2年生枳砧‘砂糖橘’Citrus reticulata ‘Shatangju’幼苗为试材,分别进行正常供镁(对照)和缺镁处理,测定幼苗叶片中镁、叶绿素、蔗糖、淀粉和脱落酸(ABA)等含量及蔗糖磷酸合成酶、酸性转化酶和丙酮酸激酶等活性,以寻找合适的‘砂糖橘’缺镁早期诊断指标。结果表明,与对照相比,缺镁处理112 d后,植株叶片镁含量显著低于对照,但叶绿素含量未显著降低;蔗糖含量在处理28 d后出现瞬时增加,但随后恢复至对照水平;ABA含量在处理56~70 d时出现显著增加,其他时间没有差异,淀粉含量则与对照一直没有差异;丙酮酸激酶活性对缺镁胁迫没有明显的响应,而蔗糖磷酸合成酶和酸性转化酶在处理14 d后活性显著下降,且后者几乎在整个采样期维持低水平。因此,初步得出‘砂糖橘’叶片的酸性转化酶活性可作为植株缺镁的即时响应指标,能较快地反映植株是否处于缺镁状态,同时,蔗糖磷酸合成酶、蔗糖和ABA含量可作为辅助指标。  相似文献   

13.
以河套蜜瓜为试材,在果实迅速膨大期通过去果处理改变库源关系,研究源叶净光合速率,蔗糖、还原糖和淀粉含量及其代谢相关酶活性的昼夜变化规律。结果表明:(1)源叶的净光合速率为单峰曲线,无明显的"光合午休"现象,去果处理对其无影响。(2)源叶中蔗糖和还原糖含量的昼夜变化为单峰曲线,蔗糖磷酸合成酶和蔗糖合成酶合成方向活性的昼夜变化为双峰曲线,蔗糖合成酶分解方向、酸性转化酶和中性转化酶活性的昼夜变化无明显规律,改变库源关系对这些指标均无显著影响;蔗糖含量升高受蔗糖磷酸合成酶和蔗糖合成酶合成方向正调控,而蔗糖含量降低则受多种酶的共同调节。(3)源叶中淀粉含量和腺苷二磷酸葡萄糖焦磷酸化酶活性的昼夜变化为单峰曲线,去果处理可以显著提高淀粉含量和腺苷二磷酸葡萄糖焦磷酸化酶活性,淀粉含量升高受腺苷二磷酸葡萄糖焦磷酸化酶正调控。  相似文献   

14.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The effects of salt stress were studied on the accumulation and metabolism of proline and its correlation with Na+ and K+ content in shoots and callus tissue of four potato cultivars, viz., Agria, Kennebec (relatively salt tolerant), Diamant and Ajax (relatively salt sensitive). Na+ and proline contents increased in all cultivars under salt stress. However, K+ and protein contents decreased in response to NaCl treatments. The activities of enzymes involved in proline metabolism, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) increased and decreased, respectively, in response to elevated NaCl concentrations. The changes of P5CS and ProDH activities in more salt sensitive cultivars (Diamant, Ajax) were more than those in the tolerant ones. Then the stimulation of synthesis in combination with a partially increase of protein proteolysis, a decrease in proline utilization and inhibition of oxidation resulted in high proline contents in seedlings and calli under salt stress. In callus tissue, reduced growth and cell size may be partially responsible for high proline accumulation in response to high NaCl levels. However, although the basic proline contents in the seedlings of more salt tolerant cultivars were higher than the sensitive ones, a clear relationship was not generally observed between accumulation of proline and salt tolerance in potato.  相似文献   

16.
Sucrose phosphate synthase and acid invertase activities in the mature leaves of roses (Rosa hybrida cv Golden Times) were greater in plants grown under a higher night temperature than under a lower temperature regime. In young shoots, the activity of acid invertase was promoted by the lower temperature while that of sucrose synthase was increased at the higher temperature. At both temperatures benzyladenine when applied to the axillary bud stimulated sucrose phosphate synthase activity and advancement of its peak of activity in the leaf subtending to the bud, and also stimulated sucrose synthase activity in the young shoot. At the lower temperature, application of benzyladenine to the axillary bud stimulated acid invertase activity in the young shoot but not in the leaves.  相似文献   

17.
Sucrose Metabolism in Bean Plants Under Water Deficit   总被引:10,自引:3,他引:7  
The effects of water stress on sucrose metabolism were evaluatedin bean plants of Tacarigua variety grown for 25 d. Decreasingwater potential and relative water content were observed. Waterstress effects resulted in a decrease of sucrose phosphate synthase(SPS) in both total (substrate saturating conditions) and Pi-insensitive(substrate limiting conditions plus inorganic phosphate) activities.The SPS Pi-insensitive activity was lower than the total SPSactivity, but the decrease in activity induced by water deficitwas relatively lower in the Pi-insensitive; however the activationstate increased during the water deficit period. An increasein sucrose synthase activity increased the activities of bothneutral and acid invertases at moderate water stress (–0·8MPa) and decreased activities at severe water stress(–1·45 MPa). The activity values of neutral invertasewere lower than those for the acid invertase. The starch/sucroseratio decreased and the ratio of total glucose/total fructoseincreased. These results indicate a relevant physiological roleof SPS in bean plants under water stress. Key words: Acid invertase, sucrose phosphate synthase, sucrose synthase  相似文献   

18.
Mesophyll and bundle sheath cells of maize leaves were separated and enzymes of starch and sucrose metabolism assayed. The starch content and activities of ADPglucose (ADPG) starch synthetase and phosphorylase expressed both on a chlorophyll and a protein basis were much lower in mesophyll cells compared to bundle sheath preparations. Exposure of the leaves to continuous illumination for 2·5 days caused the starch content of mesophyll cells to rise greatly and led to considerable increases in ADPG starch synthetase and phosphorylase activity. In glasshouse grown leaves the bulk of invertase, sucrose phosphate synthetase, sucrose phosphatase, UDPglucose pyrophosphorylase and amylase was situated in the mesophyll layer. Sucrose synthetase, ADPG starch synthetase and phosphorylase were largely confined to the bundle sheath. No enzyme could be completely assigned to one particular cell layer. Upon continuous illumination both ADPG starch synthetase and phosphorylase increased in the mesophyll bythe same relative amount. The mesophyll is likely to be a major site for sucrose synthesis in maize leaves.  相似文献   

19.
Carbohydrate metabolism was investigated during spruce somatic embryogenesis. During the period of maintenance corresponding to the active phase of embryogenic tissue growth, activities of soluble acid invertase and alkaline invertase increased together with cellular glucose and fructose levels. During the same time, sucrose phosphate synthase (SPS) activity increased while sucrose synthase (SuSy) activity stayed constant together with the cellular sucrose level. Therefore, during maintenance, invertases were thought to generate the hexoses necessary for embryogenic tissue growth while SuSy and SPS would allow cellular sucrose to be kept at a constant level. During maturation on sucrose-containing medium, SuSy and SPS activities stayed constant whereas invertase activities were high during the early stage of maturation before declining markedly from the second to the fifth week. This decrease of invertase activities resulted in a decreased hexose:sucrose ratio accompanied by starch and protein deposition. Additionally, carbohydrate metabolism was strongly modified when sucrose in the maturation medium was replaced by equimolar concentrations of glucose and fructose. Essentially, during the first 2 weeks, invertase activities were low in tissues growing on hexose-containing medium while cellular glucose and fructose levels increased. During the same period, SuSy activity increased while the SPS activity stayed constant together with the cellular sucrose level. This metabolism reorganization on hexose-containing medium affected cellular protein and starch levels resulting in a decrease of embryo number and quality. These results provide new knowledge on carbohydrate metabolism during spruce somatic embryogenesis and suggest a regulatory role of exogenous sucrose in embryo development.  相似文献   

20.
套袋对梨果实发育过程中糖组分及其相关酶活性的影响   总被引:3,自引:0,他引:3  
以翠冠和黄金梨为试材,测定套袋和未套袋(对照)梨果实发育时期果实中蔗糖、葡萄糖、果糖和山梨醇含量以及蔗糖代谢相关酶酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分积累与酶活性的关系进行了分析.结果表明:(1)两梨品种套袋果实在发育过程中蔗糖、葡萄糖、果糖、山梨醇和糖代谢相关酶活性变化趋势与对照基本一致,套袋果实糖含量均低于对照但差异不显著,而各相关酶活性在两类果实间差异表现各异.(2)在梨果实发育早期,果实中以分解酶类为主,糖分积累低;发育后期以合成酶类为主,糖分积累多.(3)两品种套袋和对照果实AI活性与葡萄糖含量均呈显著或极显著正相关,SS合成方向活性与蔗糖含量均为极显著正相关,且翠冠对照果SPS活性与蔗糖含量呈极显著正相关.可见,套袋通过提高果实发育早期转化酶(Inv)活性,降低果实后期蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)的活性来影响糖分积累,从而影响梨果品质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号