首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-six percent of the wild potato (Solanum L. section Petota Dumort.) species are polyploid, and about half of the polyploids are tetraploid species (2n = 4x = 48). Determination of the type of polyploidy and development of the genome concept for members of section Petota traditionally has been based on the analysis of chromosome pairing in species and their hybrids and, most recently, DNA sequence phylogenetics. Based on these data, the genome designation AABB was proposed for Mexican tetraploid species of series Longipedicellata Buk. We investigated this hypothesis with genomic in situ hybridization (GISH) for both representatives of the series, S. stoloniferum Schltdl. and S. hjertingii Hawkes. GISH analysis supports an AABB genome constitution for these species, with S. verrucosum Schltdl. (or its progenitor) supported as the A genome donor and another North or Central American diploid species (S. cardiophyllum Lindl., S. ehrenbergii (Bitter) Rydb., or S. jamesii Torrey) as the B genome donor. GISH analysis of chromosome pairing of S. stoloniferum also confirms the strict allopolyploid nature of this species. In addition, fluorescence in situ hybridization data suggest that 45S rDNA regions of the two genomes of S. stoloniferum were changed during coevolution of A and B genomes of this allotetraploid species.  相似文献   

2.
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct ‘genome types’ (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1–Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio‐temporal dynamics of genome organization and evolution of this region in ‘natural’ polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage‐specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.  相似文献   

3.
植物多倍体基因组的形成与进化   总被引:43,自引:2,他引:41  
杨继 《植物分类学报》2001,39(4):357-371
多倍化是植物进化变异的自然现象,也是促进植物发生进化改变的重要力量。在被子植物中,约 70%的种类在进化史中曾发生过一次或多次多倍化的过程。目前的研究结果表明,自然界绝大多数多倍体是通过未减数配子的融合而形成的,并且很多多倍体种是通过多次独立的多倍化过程而重复发生的。由多倍化所导致的重复基因在多倍体基因组中可能有三种不同的命运,即:保持原有的功能、基因沉默或分化并执行新的功能。多倍化以后,重复基因组的进化动态则主要表现在染色体重排和“染色体二倍化”、不同基因组之间的相互渗透、以及核-质之间的相互作用等方面。  相似文献   

4.
多倍化是植物物种形成与多样化的重要原动力。研究植物特别是一些重要经济作物和园艺植物多倍体的起源与进化,不仅对于揭示多倍体形成过程中性状变异的分子机制具有重要意义,而且可为植物遗传资源的保护与利用提供理论和技术支持。作为连接基因组序列片段到染色体组的桥梁,荧光原位杂交技术长期被广泛用来研究多倍体形成与进化过程中相关特异基因或序列的表达定位、外源染色体检测和鉴定、基因组结构变异等科学问题。因此,在简单介绍荧光原位杂交技术发展历史和植物多倍体主要类型的基础上,主要总结了荧光原位杂交技术在植物多倍体起源与进化相关研究上的应用。  相似文献   

5.
Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.  相似文献   

6.
Brachiaria (Trin.) Griseb belongs to the family Poaceae, and within the genus, apomixis or sexuality is present in different accessions of the same species. The majority of Brachiaria species are polyploid and apomictic, making strategies for crop improvement by breeding very intricate. In spite of the high frequency of apomictic polyploids, the relationship of polyploidy and hybridization with apomixis in Brachiaria is still unclear. Further analysis requires detailed knowledge regarding the genomic composition of the polyploids. The present work introduces the use of fluorescent in situ hybridization (FISH) into cytogenetic analysis of Brachiaria. Physical mapping of heterologous rDNA sequences, associated with conventional karyotyping of the B. brizantha diploid sexual (BRA 002747) and the tetraploid apomictic (BRA000591) accessions, provided evidence of the latter being of allopolyploid origin. Based on our results and on previous knowledge on apomixis in B. brizantha, we suggest that the origin of apomixis was probably a consequence of hybridization.  相似文献   

7.
Genomic clues to the evolutionary success of polyploid plants   总被引:1,自引:0,他引:1  
  相似文献   

8.
Coevolution of A and B genomes in allotetraploid Triticum dicoccoides.   总被引:2,自引:0,他引:2  
A Belyayev  O Raskina  A Korol  E Nevo 《Génome》2000,43(6):1021-1026
Data is presented on the coevolution of A and B genomes in allotetraploid wheat Triticum dicoccoides (2n = 4x = 28, genome AABB) obtained by genomic in situ hybridization (GISH). Probing chromosomes of T. dicoccoides with DNA from the proposed A/B diploid genome ancestors shows evidence of enriching A-genome with repetitive sequences of B-genome type. Thus, ancestral S-genome sequences have spread throughout the AB polyploid genome to a greater extent than have ancestral A-genome sequences. The substitution of part of the A-genome heterochromatin clusters by satellite DNA of the B genome is detected by using the molecular banding technique. The cause may be interlocus concerted evolution and (or) colonization. We propose that the detected high level of intergenomic invasion in old polyploids might reflect general tendencies in speciation and stabilization of the allopolyploid genome.  相似文献   

9.
? Premise of the study: Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. ? Methods: The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. ? Key results: Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. ? Conclusions: Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.  相似文献   

10.
Investigators have long searched for a polyploidy paradigm—rules or principles that might be common following polyploidization (whole‐genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best‐known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10–20 yr to fill the gaps in our knowledge of well‐studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison—systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.  相似文献   

11.
Bento M  Gustafson JP  Viegas W  Silva M 《Génome》2011,54(3):175-183
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat-rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed.  相似文献   

12.
Rarely successful polyploids and their legacy in plant genomes   总被引:2,自引:0,他引:2  
Polyploidy, or whole genome duplication, is recognized as an important feature of eukaryotic genome evolution. Among eukaryotes, polyploidy has probably had the largest evolutionary impact on vascular plants where many contemporary species are of recent polyploid origin. Genomic analyses have uncovered evidence of at least one round of polyploidy in the ancestry of most plants, fueling speculation that genome duplications lead to increases in net diversity. In spite of the frequency of ancient polyploidy, recent analyses have found that recently formed polyploid species have higher extinction rates than their diploid relatives. These results suggest that despite leaving a substantial legacy in plant genomes, only rare polyploids survive over the long term and most are evolutionary dead-ends.  相似文献   

13.

Background and Aims

Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids.

Methods

Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids.

Key Results

In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type.

Conclusions

The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.Key words: Lepidium, Brassicaceae, FISH, GISH, hybridization, polyploidy, long-distance dispersal, ITS, rDNA, Australia, New Zealand  相似文献   

14.
Recent advances have highlighted the ubiquity of whole‐genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid‐like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.6% genome expansion and 19.2% genome contraction from the early polyploid, respectively. Graph‐based clustering of next‐generation sequence data enabled assessment of the global genome composition of these allotetraploids and their diploid progenitors. Unexpectedly, in both allotetraploids, over 85% of sequence clusters (repetitive DNA families) had a lower abundance than predicted from their diploid relatives; a trend seen particularly in low‐copy repeats. The loss of high‐copy sequences predominantly accounts for the genome downsizing in N. nudicaulis. In contrast, N. repanda shows expansion of clusters already inherited in high copy number (mostly chromovirus‐like Ty3/Gypsy retroelements and some low‐complexity sequences), leading to much of the genome upsizing predicted. We suggest that the differential dynamics of low‐ and high‐copy sequences reveal two genomic processes that occur subsequent to allopolyploidy. The loss of low‐copy sequences, common to both allopolyploids, may reflect genome diploidization, a process that also involves loss of duplicate copies of genes and upstream regulators. In contrast, genome size divergence between allopolyploids is manifested through differential accumulation and/or deletion of high‐copy‐number sequences.  相似文献   

15.
The three diploid (B. nigra, B. oleracea, B. campestris) and three allotetraploid (B. carinata, B. juncea, B. napus) species of Brassica, known as the "U-triangle" are one of the best model systems for the study of polyploidy. Numerous molecular investigations have provided a wealth of new insights into the polyploid origin and changes during the evolution of Brassica, but there are still many controversial aspects of their relationship and evolution. Interpretation of genome changes during evolution requires individual chromosome identification within the genome and clear distinction of genomes within the allotetraploid. The aim of this study was to identify individual chromosomes of B. juncea (genome AABB; 2n = 4x = 36) and to determine their genomic origin. Fluorescence in situ hybridization with 5S and 45S rDNA probes enabled discrimination of a substantial number of chromosomes, providing chromosomal landmarks for 20 out of 36 chromosomes of B. juncea. Additionally, along with double target genomic in situ hybridization, it allowed assignment of all chromosomes to either the A or B genomes.  相似文献   

16.
The study of genome size evolution in a phylogenetic context in related polyploid and diploid lineages can help us to understand the advantages and disadvantages of genome size changes and their effect on diversification. Here, we contribute 199 new DNA sequences and a nearly threefold increase in genome size estimates in polyploid and diploid Veronica (Plantaginaceae) (to 128 species, c. 30% of the genus) to provide a comprehensive baseline to explore the effect of genome size changes. We reconstructed internal transcribed spacer (ITS) and trnL‐trnL‐trnF phylogenetic trees and performed phylogenetic generalized least squares (PGLS), ancestral character state reconstruction, molecular dating and diversification analyses. Veronica 1C‐values range from 0.26 to 3.19 pg. Life history is significantly correlated with 1C‐value, whereas ploidy and chromosome number are strongly correlated with both 1C‐ and 1Cx‐values. The estimated ancestral Veronica 1Cx‐value is 0.65 pg, with significant genome downsizing in the polyploid Southern Hemisphere subgenus Pseudoveronica and two Northern Hemisphere subgenera, and significant genome upsizing in two diploid subgenera. These genomic downsizing events are accompanied by increased diversification rates, but a ‘core shift’ was only detected in the rate of subgenus Pseudoveronica. Polyploidy is important in the evolution of the genus, and a link between genome downsizing and polyploid diversification and species radiations is hypothesized. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 243–266.  相似文献   

17.
Genome evolution in polyploids   总被引:71,自引:0,他引:71  
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.  相似文献   

18.
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.  相似文献   

19.
It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号