首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The modified Cry l Ac was expressed in transgenic tobacco plants. To allow secretion of the CrylAc protein into the intercellular space, the signal peptide sequence of potato proteinase inhibitor II (pinII) was N-terminally fused to the CrylAc encoding region. Expression of Cry 1 Ac in transgenic tobacco plants was assayed with ELISA. The results showed that pinII signal peptide sequence enhanced the expression of Cry lAc protein and led to the secretion of the Cry 1 Ac protein in transgenic tobacco plants. GFP gene was also fused to the signal peptide sequence and transformed to tobacco. The results of fluorescent detection showed that GFP had localized in the apoplast of transgenic plants.  相似文献   

2.
To investigate the possible function of the agglutinin from Amaranthus caudatus L. (ACA) in plant defending against insect pests, ACA cDNA was cloned by RT-PCR and the 5‘ and 3‘ sequences were confirmed by rapid amplification of cDNA ends (RACE). The phloem-specific expression vector of ACA gene, pBCACAc, was constructed based on the plant binary vector pBC438 and transfered into tobacco plants via Agrobacterium-mediated transformation method. Results from PCR and Southern blotting analysis showed that AOA gene was integrated into the genomes of transformed plants and the transgene integration varied from one to four estimated copies per genome. Western blotting analysis indicated that ACA gene was transcribed and translated in the transgenic plants. The bioassay of Myzus persicae Sulzer on detached leaves demonstrated that the 78% transgenic tobacco plants displayed an average aphid-resistant rate of more than 75%. Some apterous progeny of M. persicae were found dead on the resistant plants. These results indicate that ACA gene should be an effective aphid-resistant gene and could be valuable for application in crop breeding for aphid resistance.  相似文献   

3.
Trehalose is a non-reducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances the tolerance of organisms to abiotic stress. In the present study, we report on the expression of the Grifolafrondosa Fr. trehalose synthase (TSase) gene for manipulating abiotic stress tolerance in tobacco (Nicotiana tabaccum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and was transferred into tobacco by Agrobacterium tumefaciens EHA105. Compared with non-transgenic plants, transgenic plants were able to accumulate high levels of products of trehalose, which were increased up to 2.126-2.556 mg/g FW, although levels were undetectable in non-transgenic plants. This level of trehalose in transgenic plants was 400-fold higher than that of transgenic tobacco plants cotransformed with Escherichia coli TPS and TPP on independent expression cassettes, twofold higher than that of transgenic rice plants transformed with a bifunctional fusion gene (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase(TPP) of E. coil, and 12-fold higher than that of transgenic tobacco plants transformed the yeast TPS1 gene.It has been reported that transgenic plants with E. coil TPS and/or TPP were severely stunted and had morphological alterations of their roots. Interestingly, our transgenic plants have obvious morphological changes, including thick and deep-coloured leaves, but show no growth inhibition; moreover, these morphological changes can restore to normal type in T2 progenies. Trehalose accumulation in 35S-35S:TSase plants resulted in increased tolerance to drought and salt, as shown by the results of tests on drought, salt tolerance, and drought physiological indices, such as water content in excised leaves, malondialdehyde content, chlorophyll a and b contents, and the activity of superoxide dismutase and peroxidase in excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought and salt.  相似文献   

4.
A vacuolar Na^ /H^ antiporter cDNA gene was successfully isolated fromHordeum brevisubulatum (Trin.) Link using the rapid amplification ofcDNA ends (RACE) method. The gene was named HbNHXI and was found to consist of 1 916 bp encoding a predicted polypeptide of 540 amino acids with a conserved amiloride-binding domain. Phylogenetic tree analysis of the Na^ /H^ antiporters showed that the HbNHXI gene shares 55.3%-74.8% similarity with the vacuolar-type Na^ /H^ antiporters. Transgenic tobaccos that contain the HbNHXI gene, integrated by forward insertion into the tobacco genome, were obtained via Agrobacterium tumerfaciens and characterized for the determination of the concentration of Na^ and K^ ions, as well as proline, in the presence of 300 mmol/L NaCl. The T1 transgenic plants showed more tolerance to salt and drought than did wild-type plants. Our data suggest that overexpression of the HbNHXI gene could improve the tolerance of transgenic tobaccos to salt and drought through the function of the vacuolar Na^ /H^ antiporter.  相似文献   

5.
6.
To develop a plant expression system for the production of the human papillomavirus type 16 (HPV16) vaccine, we investigated whether the HPV16 L1 protein can be expressed in tobacco plants and whether it can be used as the cheapest form of edible vaccine. The HPV16 L1 coding sequence was amplified by PCR using specific primers from the plasmid pGEM-T-HPV16 containing the template sequence, and subcloned into the intermediate vector pUCmT and binary vector pBI121 consecutively to obtain the plant expression plasmid pBI-L1. The T-DNA regions of the pBI-L1 binary vector contained the constitutive Cauliflower mosaic virus (CaMV) 35S promoter and the neomycin phosphotransferase npt Ⅱ gene, which allowed the selection of transformed plants using kanamycin. The tobacco plants were transformed by cocultivating them, using the leaf disc method, with Agrobacterium tumefaciens LBA4404, which harbored the plant expression plasmid. The regenerated transgenic tobacco plants were selected using kanamycin, and confirmed by PCR. The results of the Southern blot assay also showed that the HPV16 L1 gene was integrated stably into the genome of the transformed tobacco plants. The Western blot analysis showed that the transformed tobacco leaves could express the HPV 16 L1 protein. Furthermore, it was demonstrated by ELISA assay that the expressed protein accounted for 0.034%-0.076% of the total soluble leaf protein, was able to form 55nm virus-like particles compatible with HPV virus-like particle (VLP), and induced mouse erythrocyte hemagglutination in vitro. The present results indicate that the HPV 16 L1 protein can be expressed in transgenic tobacco plants and the expressed protein possesses the natural features of the HPV16 L1 protein, implying that the HPV16 L1 transgenic plants can be potentially used as an edible vaccine.  相似文献   

7.
The indoleacetic-acid-lysine synthetase (iaaL) gene from Pseudomonas syringae subsp. savastanoi was fused to tobacco tapetum-specific expression promoter TA29, and introduced into tobacco. The expression pattern of this chimeric gene was studied, and the endogenous indoleacetic acid (IAA) levels in different organs were assayed. The results demonstrated that TA29 promoter was only able to direct the specific expression of iaaL gene in transgenic tobacco anther, and resulted in the decrease of endogenous IAA levels in transgenic tobacco anther. No significant phe-notype variation was observed among the transgenic plants at the whole plant level. However, the percentage of pollen embryogenesis was reduced to 11 % when anthers of the transgenic plants were cultured on the modified hormone-free Nistch H (NH) medium, while those of both CK1 and CK2 (see sec. 1.2.2) were more than 50% ; when the an-thers were cultured on NH medium supplemented with 0. 2 mg/L IAA, the percentage of pollen embryogenesis re-stor  相似文献   

8.
9.
Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato.The biosynthesis of anthocyanins is a complex Researchbiological process,in which multiple genes are involved including structural genes and regulatory genes.In this study,StAN11,a WD40-repeat gene,was cloned from potato cultivar Chieftain(Solanum tuberosum L.).StAN11(HQ599506)contained no intron and its open reading frame(ORF)was 1,029 bp long,encoding a putative protein of 342 amino acids.In order to verify its role in anthocyanin biosynthesis,StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation.The color of transgenic tuber skin was significantly deepened,compared to the wild-type control,which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin.Further analysis on the expression of Flavonone-3-hydroxylase(F3H),Dihydroflavonol reductase(DFR),Anthocyanidin synthase(ANS),and Flavonoid 3-O-glucosyl transferase(3GT)in transgenic plants revealed that only DFR was upregulated.This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis.  相似文献   

10.
A gene of the enzyme involved in xenobiotic metabolism in mammalian liver was introduced into potato to confer inducible herbicide tolerance. A rat cytochrome P450 monooxygenase, CYP1A1 cDNA, was kept under the control of the tobacco PR1a promoter in order to apply the system of chemical inducible expression using the plant activator Benzothiadiazole (BTH). Transgenic plants were obtained based on the kanamycin resistance test and PCR analysis. Northern-blot analysis revealed the accumulation of mRNA corresponding to rat CYP1A1 in the transgenic plants treated with BTH (3.0 μmol/pot), whereas no accumulation of the corresponding mRNA occurred without BTH treatment. These transgenic plants also produced a protein corresponding to CYP1A1 in the leaves by BTH treatment. The transgenic plants with BTH application showed a much-higher tolerance to the phenylurea herbicides chlortoluron and methabenzthiazuron than non-transgenic plants. These findings indicated that the ability of metabolizing the two herbicides to less-toxic derivatives was displayed in the transgenic plants after BTH treatment. Transgenic plants harboring the CYP1A1 cDNA fused with the yeast P450 reductase (YR) gene under the control of PR1a were also produced. Although the plants showed a lower expression level of the fused gene than transgenic plants with CYP1A1 cDNA alone, they were tolerant to herbicides. These facts suggested that the CYP1A1 enzyme fused with YR showed a higher specific activity than CYP1A1 alone. This study demonstrated that the mammalian cDNA for the de-toxification enzyme of herbicides under the control of the PR1a promoter conferred chemical-inducible herbicide tolerance on potato. Received: 15 March 2001 / Accepted: 14 June 2001  相似文献   

11.
WUSCHEL(WUS)是近年报道的一个重要的干细胞调控基因.本实验用RT-PCR技术从拟南芥(Arabidopsisthaliana L.)中克隆到其cDNA并构建了双增强的CaMV3 5S启动子驱动的超表达载体pBKB.借助农杆菌(Agrobacterium tumefaciens)介导转化烟草(Nicotiana tabacum L.),获得转基因植株.PCR和RT-PCR鉴定分别证明,外源WUS已整合到烟草基因组并已表达.转基因烟草地上部分出现大量异位增生的突起,扫描电镜观察表明:突起部分的细胞与分生组织细胞相似,部分突起能够发育为叶芽、花芽,表明WUS超表达引起烟草细胞异常分裂并在已分化组织中重新启动了器官形成.茎尖和花的内两轮器官没有上述变化.结合拟南芥的有关研究,推测烟草中可能也存在类似拟南芥WUS和其阻抑蛋白CLAVATA3、AGAMOUS间的反馈调节机制.转基因烟草叶发育表型变化明显,与生长素极性运输受抑制引起的表型相似,因此,作为生长点调控基因,WUS可能通过生长素对叶的发育进行调控.本研究为WUS基因的功能分析和有关生物技术应用提供了有意义的信息.  相似文献   

12.
We have characterized the mechanism of action of four transgenes (AtBCB [Arabidopsis blue copper-binding protein], parB [tobacco (Nicotiana tabacum) glutathione S-transferase], NtPox [tobacco peroxidase], and NtGDI1 [tobacco GDP dissociation inhibitor]) that independently Al resistance on transgenic Arabidopsis. All four transgenic lines showed lower deposition of callose after Al treatment than the Landsberg erecta ecotype of Arabidopsis, confirming that the four genes function to ameliorate Al toxicity. Influx and efflux experiments of Al ions suggested that the AtBCB gene may suppress Al absorption, whereas expression of the NtGDI1 gene promotes a release of Al in the root tip region of Arabidopsis. The total enzyme activities of glutathione S-transferases or peroxidases in transgenic lines carrying either the parB or NtPox genes were significantly higher than in the Landsberg erecta ecotype of Arabidopsis, and these enzyme activities were maintained at higher levels during Al stress. Furthermore, lipid peroxidation caused by Al stress was repressed in these two transgenic lines, suggesting that overexpression of these two genes diminishes oxidative damage caused by Al stress. Al-treated roots of transgenic plants were also stained by 4',6-diamino-2-phenylindole to monitor cell death caused by Al toxicity. The result suggested that cell death is repressed in the NtPox line. Analysis of F(1) hybrids between the four transgenic lines suggests that more resistant transgenic plants can be constructed by combinations of these four genes.  相似文献   

13.
14.
Organogenesis at the shoot meristem requires a delicate balance between stem cell specification and differentiation. In Arabidopsis thaliana, WUSCHEL (WUS) is a key factor promoting stem cell identity, whereas the CLAVATA (CLV1, CLV2, and CLV3) loci appear to promote differentiation by repressing WUS expression. In a screen for mutations modifying clv1 mutants, we have identified a novel regulator of meristem development we term CORONA (CNA). Whereas cna single mutant plants exhibit subtle defects in meristem development, clv cna double mutants develop massively enlarged apices that display early loss of organogenesis, misexpression of WUS and CLV3, and eventual differentiation of the entire apex. The CNA gene was isolated by positional cloning and found to encode a class III homeodomain Leu zipper protein. A missense mutation resulting in the dominant-negative cna-1 allele was identified in a conserved domain of unknown function, and a likely null allele was shown to display a similar but weaker phenotype. CNA is expressed in developing vascular tissue, diffusely through shoot and flower meristems, and within developing stamens and carpels. Our analysis of WUS expression in wild-type, clv, and clv cna plants revealed that, contrary to current models, WUS is neither necessary nor sufficient for stem cell specification and that neither WUS nor CLV3 is a marker for stem cell identity. We propose that CNA functions in parallel to the CLV loci to promote organ formation.  相似文献   

15.
16.
17.
18.
The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux through the cycle. In order to investigate the effect of overexpression of aldolase, this study generated transgenic tobacco (Nicotiana tabacum L. cv Xanthi) expressing Arabidopsis plastid aldolase. Resultant transgenic plants with 1.4-1.9-fold higher aldolase activities than those of wild-type plants showed enhanced growth, culminating in increased biomass, particularly under high CO? concentration (700 ppm) where the increase reached 2.2-fold relative to wild-type plants. This increase was associated with a 1.5-fold elevation of photosynthetic CO? fixation in the transgenic plants. The increased plastid aldolase resulted in a decrease in 3-phosphoglycerate and an increase in ribulose 1,5-bisphosphate and its immediate precursors in the Calvin cycle, but no significant changes in the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) or other major enzymes of carbon assimilation. Taken together, these results suggest that aldolase overexpression stimulates ribulose 1,5-bisphosphate regeneration and promotes CO? fixation. It was concluded that increased photosynthetic rate was responsible for enhanced growth and biomass yields of aldolase-overexpressing plants.  相似文献   

19.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

20.
Numerous studies with transgenic plants have demonstrated that overexpression of enzymes related to organic acid metabolism under the control of CaMV 35S promoter increased organic acid exudation and Al-resistance. The synthesis of organic acids requires a large carbon skeleton supply from leaf photosynthesis. Thus, we produced transgenic tobacco overexpressing cytosolic malate dehydrogenase (MDH) cDNA from Arabidopsis thaliana (amdh) and the MDH gene from Escherichia coli (emdh), respectively, under the control of a leaf-specific light-inducible promoter (Rubisco small subunit promoter, PrbcS) in the present study. Our data indicated that an increase (120–130%) in MDH-specific activity in leaves led to an increase in malate content in the transgenic tobacco leaves and roots as well as a significant increase in root malate exudation compared with the WT plants under the acidic (pH 4.5) conditions irrespective of 300 μM Al3+ stress absence or presence. After being exposed to 25 μM Al3+ in a hydroponic solution, the transgenic plants exhibited stronger Al-tolerance than WT plants and the degree of A1 tolerance in the transgenic plants corresponded with the amount of malate secretion. When grown in an Al-stress perlite medium, the transgenic tobacco lines showed better growth than the WT plants. The results suggested that overexpression of MDH driven by the PrbcS promoter in transgenic plant leaves enhanced malate synthesis and improved Al-resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号