首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.  相似文献   

2.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

3.
Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.  相似文献   

4.
The recent irruption of Pacific red lionfish (Pterois volitans) on Caribbean and Atlantic coral reefs could prove to be one of the most damaging marine invasions to date. Invasive lionfish are reaching densities much higher than those reported from their native range, and they have a strong negative effect on the recruitment and abundance of a broad diversity of native coral-reef fishes. Otherwise, little is known about how lionfish affect native coral-reef communities, especially compared to ecologically similar native predators. A controlled field experiment conducted on small patch-reefs in the Bahamas over an 8-week-period demonstrated that (1) lionfish caused a reduction in the abundance of small native coral-reef fishes that was 2.5?±?0.5 times (mean?±?SEM) greater than that caused by a similarly sized native piscivore, the coney grouper Cephalopholis fulva (93.7 vs. 36.3?% reduction); (2) lionfish caused a reduction in the species richness of small coral-reef fishes (loss of 4.6?±?1.6 species), whereas the native piscivore did not have a significant effect on prey richness; (3) the greatest effects on the reef-fish community, in terms of both abundance and richness, occurred when both native and invasive predators were present; and (4) lionfish grew significantly faster (>6 times) than the native predator under the same field conditions. These results suggest that invasive lionfish have stronger ecological effects than similarly sized native piscivores, and may pose a substantial threat to native coral-reef fish communities.  相似文献   

5.
In Caribbean reefs, the lionfish Pterois volitans is an invasive species that causes severe negative ecological effects, especially as this crepuscular predator consumes very diverse prey. Lionfish are not active during the day and stay in their refuges, sharing these spaces with various other fishes. The aim of this study is to determine which fishes are associated with the lionfish in their shelters, and what characteristics of both the invasive and native species may influence and explain such coexistence between a predator and its potential prey. Through diving and snorkelling, we visited 141 lionfish refuges, mostly caves, where we observed 204 lionfish and 494 other fish from 16 native species. We recorded species and abundance, as well as lionfish size and abundance. Half of the lionfish were observed in groups and the majority were large-sized. The association with most fish species seems fortuitous, but three species, Gramma loreto, Chromis cyanea and Canthigaster rostrata, were frequently observed in association with lionfish. Numerous fish juveniles, most likely Scarus coeruleus, were also observed together with the invasive predator. The more commonly associated fishes, particularly G. loreto, are mostly associated with large-sized lionfish that were found in groups. The associated fishes are also generally found in groups. Gramma loreto is a potential cleaner of the lionfish; the reasons for the association between these fish species and the invasive lionfish may be more complex than a simple predator-prey relationship and are discussed based on their biological traits and previously reported lionfish trophic ecology and predation behaviour.  相似文献   

6.
Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.  相似文献   

7.
As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.  相似文献   

8.
Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.  相似文献   

9.
Culling can be an effective management tool for reducing populations of invasive species to levels that minimize ecological effects. However, culling is labour-intensive, costly, and may have unintended ecological consequences. In the Caribbean, culling is widely used to control invasive Indo-Pacific lionfish, Pterois volitans and P. miles, but the effectiveness of infrequent culling in terms of reducing lionfish abundance and halting native prey decline is unclear. In a 21-month-long field experiment on natural reefs, we found that culling effectiveness changed after the passage of a hurricane part-way through the experiment. Before the hurricane, infrequent culling resulted in substantial reductions in lionfish density (60–79%, on average, albeit with large uncertainty) and slight increases in native prey species richness, but was insufficient to stem the decline in native prey biomass. Culling every 3 months (i.e., quarterly) and every 6 months (i.e., biannually) had similar effects on lionfish density and native prey fishes because of high rates of lionfish colonization among reefs. After the hurricane, lionfish densities were greater on all culled reefs compared to non-culled reefs, and prey biomass declined by 92%, and species richness by 71%, on biannually culled reefs. The two culling frequencies we examined therefore seem to offer a poor trade-off between the demonstrated conservation gains that can be achieved with frequent culling and the economy of time and money realized by infrequent culling. Moreover, stochastic events such as hurricanes can drastically limit the effectiveness of culling efforts.  相似文献   

10.
Lionfish are successful invasive predators in the Caribbean region and inhabit a large range of habitats. Our study in the Caribbean has focused on the relationships between the biological characteristics of lionfish particularly their size, their activities and use of those different habitats. In this study, we observed a high number of lionfish individuals, focusing on the behavioural activities and biological traits in relation to different habitats and environmental characteristics. We monitored 793 individuals, recording their activities, biological traits, and habitat characteristics. Our results report that lionfish are not solitary, but frequently form groups for many activities. We provide evidence of differences between lionfish habitat use according to activity, and the size of individual fish. Considering the size is correlated with age, coral reefs appear to be the preferred habitat of older individuals, whereas the youngest lionfish use a diversity of habitats, ranging from mangroves to coral reefs. In addition, this study suggests that predation of lionfish is age-dependent strategy, and depends on time and the tone of the environment. Lionfish do not only use the head-down posture to catch prey but also horizontal and head-up postures. The youngest lionfish hunt mainly in dark areas and during the night while the older fish were observed hunting mostly during the day and in clear areas. These new aspects of lionfish ecology and behaviour are discussed in light of their invasive success.  相似文献   

11.
The lionfish, Pterois miles, is one of the most recent Lessepsian immigrants into the Mediterranean Sea, and it poses a serious threat to marine ecosystems in the region. This study assesses the basic biology and ecology of lionfish in the Mediterranean, examining morphometrics, reproduction and diet as well as population structure and distribution. The population density of lionfish has increased dramatically in Cyprus since the first sighting in late 2012; by 2018 aggregations of up to 70 lionfish were found on rocky grounds with complex reefs and artificial reefs in depths of 0–50 m. Lionfish in Cyprus become mature within a year, and adults are capable of spawning year-round, with peak spawning in summer when the sea-surface temperature reaches 28.4°C. The Cypriot lionfish grow faster and bigger than in their native range, and females are more common than males. Lionfish are generalist predators in these waters, as also found in their native range, consuming a range of teleost and crustacean prey, some of which are of high economic value (e.g., Spicara smaris and Sparisoma cretense) or have an important role in local trophic webs (e.g., Chromis chromis). Overall, the reproductive patterns, the presence of juveniles and adults throughout the year, the rapid growth rates and the generalist diet indicate that lionfish are thriving and are now already well established in the region and could potentially become the serious nuisance that they are in their temperate and tropical western Atlantic–invasive range.  相似文献   

12.
The invasion by Indo-Pacific lionfish (Pterois volitans and P. miles) of the western Atlantic, Caribbean and Gulf of Mexico is emerging as a major threat to coral reef communities across the region. Comparing native and introduced populations of invasive species can reveal shifts in ecology and behaviour that can accompany successful invasions. Using standardized field surveys replicated at multiple sites in Kenya and the Bahamas, we present the first direct comparisons of lionfish density, body size, biomass and behaviour between native and invaded coral reefs. We found that lionfish occur at higher densities with larger body sizes and total biomass on invaded Bahamian coral reefs than the ecologically equivalent species (P. miles) does on native Kenyan reefs. However, the combined average density of the five lionfish species (Pterois miles, P. antennata, P. radiata, Dendrochirus brachypterus and D. zebra) on Kenyan reefs was similar to the density of invasive lionfish in the Bahamas. Understanding the ecological processes that drive these differences can help inform the management and control of invasive lionfish.  相似文献   

13.
Indo-Pacific Lionfish (Pterois volitans and P. miles) are venomous marine fishes in the family Scorpaenidae that invaded the Caribbean Sea, Gulf of Mexico, and western North Atlantic Ocean beginning in the mid-1980s. Lionfish are generalist, opportunistic predators that consume a variety of invertebrates and small reef fishes, such that the presence of Lionfish can significantly reduce reef fish abundance, diversity, and recruitment on invaded reefs. This study focused on the feeding ecology of Lionfish in Biscayne National Park (BNP), located in southeast Florida, USA. BNP consists of multiple marine habitats, including mangroves, seagrass beds, coral reefs, and limestone keys that support a diverse array of species resulting in multi-million dollar fishing and tourism industries. These habitats within BNP are at risk from the predatory impacts of invasive Lionfish. Through morphological prey identification of stomach contents, supplemented with DNA barcoding for identification of highly-digested prey items, Lionfish diet was analyzed and compared among fish sizes (immature, transitional and mature), BNP region (bay, shelf, and edge), and seasons (wet and dry). A total of 513 stomachs, containing more than 2600 prey items, were examined. We report that Lionfish in BNP fed predominantly on small reef fishes and small crustaceans, with a dietary shift from crustaceans to fishes occurring with increasing Lionfish size. Diets differed among BNP regions for medium-sized (100–179 mm) transitional Lionfish but not for large-sized (≥?180 mm) mature individuals. Furthermore, dietary differences between seasons were observed in mature Lionfish, but no seasonal differences were detected for smaller Lionfish (i.e., immature and transitional Lionfish). Based on the diet habits observed, Lionfish in BNP could have significant ecological and economic consequences for BNP and south Florida coastal habitats.  相似文献   

14.
Less than a decade after being observed off Florida, the invasive Indo-Pacific lionfish is now widely distributed off the southeast coast of the United States. As a step towards measuring invasion impacts to native communities, we examine the magnitude and extent of this invasion by first, compiling reports of lionfish to provide range information and second, estimate lionfish abundance from two separate studies. We also estimate native grouper (epinepheline serranids) abundance to better assess and compare lionfish abundances. In the first study we conducted SCUBA diver visual transect surveys at 17 different locations off the North Carolina coast in water depths of 35–50 m. In the second study, we conducted 27 Remote Operated Vehicle (ROV) transect surveys at five locations from Florida to North Carolina in water depths of 50–100 m. In both studies, lionfish were found to be second in abundance only to scamp (Mycteroperca phenax). Lionfish were found in higher abundance in the shallower North Carolina SCUBA surveys ( ha−1) than in the deep water ROV surveys ( ha−1). Lionfish reports continue to expand most recently into the Bahamas, raising the specter of further spread into the Caribbean and Gulf of Mexico. The potential impacts of lionfish to native communities are likely to be through direct predation, competition and overcrowding. The high number of lionfish present in the ecosystem increases the potential for cascading impacts throughout the food chain. Within the southeast region the combined effects of climate change, overfishing and invasive species may have irreversible consequences to native communities in this region. An erratum to this article can be found at  相似文献   

15.
The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.  相似文献   

16.
The lionfish invasion in the Atlantic and Caribbean has proceeded with vigor since their introduction in the 1980s or early 1990s. Lionfish affect recruitment of juvenile fish to reefs due to predation and are found in densities far surpassing that of their native Indo-Pacific. There is concern that the lionfish may become introduced and proliferate (through aquarium releases, transport on floating debris, or passage through the Panama Canal in ship ballast water) in the eastern tropical and north Pacific. This study presents the first known prediction of the potential for establishment of lionfish in the eastern Pacific Ocean. Through computational modeling, we compare and contrast the dynamics of random hypothetical introductions of lionfish into the eastern Pacific and Atlantic Oceans in order to highlight the different potentials for invasion in both basins. Connectivity between discrete regions (precincts) in both the Atlantic and eastern Pacific are examined and settlement densities are calculated to indicate possible locations of establishment of breeding lionfish populations. Our results suggest that lionfish, which are successful invaders in the Atlantic, may not be as successful in the eastern Pacific due to weak mesoscale connectivity which reduces the rapid spread of lionfish larvae.  相似文献   

17.
The rapid invasion of lionfish into the Western North Atlantic and Caribbean will undoubtedly affect native reef fishes via processes such as trophic disruption and niche takeover, yet little is known about the dynamics of this invasion. We constructed a stage-based, matrix population model in which matrix elements were comprised of lower-level parameters. Lionfish vital rates were estimated from existing literature and from new field and laboratory studies. Sensitivity analysis of lower-level parameters revealed that population growth rate is most influenced by larval mortality; elasticity analysis of the matrix indicated strong influence of the adult and juvenile survival elements. Based on this model, approximately 27% of an invading adult lionfish population would have to be removed monthly for abundance to decrease. Hierarchical modeling indicated that this point estimate falls within a broad uncertainty interval which could result from imprecise estimates of life-history parameters. The model demonstrated that sustained removal efforts could be substantially more effective by targeting juveniles as well as adults.  相似文献   

18.
Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish''s introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively associated with the condition index of the native grouper but not that of the lionfish or lizardfish. While two co-occurring native fishes were more heavily parasitized compared to lionfish in Panama any indirect benefits of differential parasitism requires further investigation. Future parasitological surveys of lionfish across the eastern coast of North America and the Lesser Antilles would further resolve geographic patterns of parasitism in invasive lionfish.  相似文献   

19.
Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m−2) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m−2), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.  相似文献   

20.
Aim Lionfish (Pterois volitans and P. miles) are popular ornamental fishes native to the Indo‐Pacific that were introduced into Florida waters and are rapidly spreading and establishing throughout the Western Atlantic (WA). Although unfortunate, this invasion provides an excellent system in which to test hypotheses on conservation biology and marine biogeography. The goals of this study are: (1) to document the geographical extent of P. volitans and P. miles; (2) to determine whether the progression of the lionfish invasion is the result of expansion following the initial introduction event or the consequence of multiple introductions at various WA locations; and (3) to analyse the chronology of the invasion in conjunction with the genetic data in order to provide real‐time assessments of hypotheses of marine biogeography. Location The Greater Caribbean, including the US east coast, Bermuda, the Bahamas and the Caribbean Sea. Methods Mitochondrial control region sequences were obtained from lionfish individuals collected from Bermuda and three Caribbean locations and analysed in conjunction with previously published data from five native and two non‐native locations (US east coast and the Bahamas; a total of six WA locations). Genetic variation within and among groups was quantified, and population structure inferred via spatial analyses of molecular variance, pairwise ΦST, exact tests, Mantel tests and haplotype networks. Results Mitochondrial DNA screening of WA lionfish shows that while P. miles is restricted to the northernmost locations (Bermuda and the US east coast), P. volitans is ubiquitous and much more abundant. Invasive populations of P. miles and P. volitans have significantly lower levels of genetic diversity relative to their native counterparts, confirming that their introduction resulted in a strong founder effect. Despite the relative genetic homogeneity across the six WA locations, population structure analyses of P. volitans indicate significant differentiation between the northern (US east coast, the Bahamas and Bermuda) and the Caribbean populations. Main conclusions Our findings suggest that the ubiquity of WA lionfish is the result of dispersal from a single source of introduction in Florida and not of multiple independent introductions across the range. In addition, the progression of the lionfish invasion (as documented from sightings), integrated with the genetic evidence, provides support for five of six major scenarios of connectivity and phylogeographical breaks previously inferred for Caribbean organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号