首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Sexually selected exaggerated traits are often coupled with modifications in other nontarget traits. In insects with weapons, enlargements of nontarget characters that functionally support the weapon often occur (i.e. supportive traits). The support of sexual traits requires developmental coordination among functionally related multiple traits—an explicit example of morphological integration. The genetic theory predicts that developmental integration among different body modules, for which development is regulated via different sets of genes, is likely to be coordinated by pleiotropic factors. However, the developmental backgrounds of morphological integrations are largely unknown. We tested the hypothesis that the juvenile hormone (JH), as a pleiotropic factor, mediates the integration between exaggerated and supportive traits in an armed beetle Gnatocerus cornutus. During combat, males of this beetle use exaggerated mandibles to lift up their opponents with the supportive traits, that is, the head and prothoracic body parts. Application of methoprene, a JH analog (JHA), during the larval to prepupal period, induced the formation of large mandibles relative to the body sizes in males. Morphometric examination of nontarget traits elucidated an increase in the relative sizes of supportive traits, including the head and prothoracic body parts. In addition, reductions in the hind wing area and elytra length, which correspond to flight and reproductive abilities, were detected. Our findings are consistent with the genetic theory and support the idea that JH is a key pleiotropic factor that coordinates the developmental integration of exaggerated traits and supportive characters, as well as resource allocation trade‐offs.  相似文献   

3.
Interactions between male stag beetles usually involve aggressive behavior using their long mandibles as weapons to compete with rival males over females. Considerable variation exists within populations in male body size, and may affect their behavior and the outcome of male-male contests. We investigated the aggressive interactions between male Aegus chelifer chelifer, a small tropical stag beetle species. Morphological traits in relation to aggressiveness and the outcome of fights were examined in laboratory-reared beetles. The fight-engagement ratios of major and minor morph males were not significantly different and analyses revealed that the size of body parts had more effect on the fighting success than the weapon part (mandibles). The probability of winning a contest was higher in males with a larger head width (HW), and so HW was considered as the resource holding potential (RHP). No effects of the trait size on the initiation of fights or aggressive intensity was found. Relationships between the fight duration and RHP were not significantly consistent with any assessment strategies, but were close to the mutual assessment model.  相似文献   

4.
Trade-offs between developing body parts may contribute to variation in allometric scaling relationships in a variety of taxa. Experimental evidence indicates that both circulating levels of juvenile hormone (JH) and sensitivities of developing body parts to JH can influence morphology in polyphenic insects. However, the extent to which JH may regulate both the development of traits that scale continuously with body size and trade-offs between these traits is largely unknown. Here, I present evidence that the JH analog methoprene applied to final instar larvae of a stalk-eyed fly (Cyrtodiopsis dalmanni) can induce males to produce larger eye-stalks relative to their body size. Examination of testis growth, sperm transfer, and egg maturation indicates that JH induces a trade-off between eye-span and gonad development in adult males, but not females. Age at sexual maturity was unaffected by larval JH applications to either sex. Collectively, these results are consistent with JH-mediated allocation of resources to eye-span at the expense of testes, and indicate potential costs for the production of an exaggerated trait.  相似文献   

5.
Heat shock protein 90 (HSP90) belongs to a family of conserved chaperons with multiple roles in stress adaptation and development, including spermatogenesis, oogenesis and embryogenesis in insects. In the red flour beetle, Tribolium castaneum, we found that HSP90 is transiently upregulated during larval development, in prepupae, in female pupae and in adults, suggesting multiple post-embryonic roles. We found that silencing HSP90 expression by RNA interference was lethal within 10 days at all developmental stages. Titration experiments revealed that larvae were more susceptible than pupae or beetles. Interestingly, HSP90 silencing in final instar larvae resulted in abnormal pupal phenotypes lacking compound eyes and exhibiting prepupal features, suggesting developmental arrest at the prepupal stage. Our results suggest that HSP90 functions can be expanded beyond the known ones in insect embryogenesis to include roles in post-embryonic development such as the regulation of compound eye development.  相似文献   

6.
Many studies have demonstrated the adaptive advantage of elaborate secondary sexual traits, but few if any have shown compelling evidence for the limits to the elaboration of these traits that must exist. We describe such evidence in the exaggerated mandibles of stag beetles. In 1932, Huxley showed that the slope of the allometric relationship between mandible length and body size in some stag beetles declines in the largest males. We show that this curvature is most pronounced in species with relatively long mandibles, consistent with the hypothesis that the decrease in slope is caused by the increasing costs of large mandibles, which ultimately limit their size. Increasing depletion of resources in the prepupa and pupa by the rapidly growing mandibles is the most likely way in which these costs are manifested. The curved allometries have two components: intraspecific mandible allometry is steepest among small males of the species with the longest mandibles, but shallowest among the largest males of those same species. These patterns suggest that selection continues to favour positive allometry in species that invest relatively more in weaponry despite the limits to mandible exaggeration being reached in the largest males.  相似文献   

7.
锹甲作为一类观赏昆虫在人文世界里受到长久的关注,文章对人文世界里的锹甲进行回顾:综述不同国家和地区中锹甲的多种称谓;从历史文化角度追溯锹甲学名的由来、锹甲与天牛科学名的关系、欧洲宗教中的锹甲、民间故事与风俗中的锹甲;从艺术欣赏角度介绍锹甲与绘画、锹甲与邮票、锹甲与装饰;着眼与现实生活,对锹甲的综合现状进行评述,并总结锹甲作为物种正面临的问题,呼吁人们在欣赏锹甲的同时,更要关注锹甲的物种多样性保护。  相似文献   

8.
Male-male competition frequently results in the evolution of sexually selected traits used as weapons and ornaments. The expression of these traits often depends on male condition, i.e., condition dependence. Although males often have multiple sexually selected traits, to date many studies have focused on the morphological analysis of one sexual trait whilst ignoring the others. We here report phenotypic plasticity for multiple sexual traits, by manipulating larval diet quality and density, in the broad-horned flour beetle Gnatocerus cornutus. The male beetles possess enlarged mandibles, developed genae and a pair of small horns, but females lack these completely. Larval density significantly affected overall body size but not relative investment in each sexual trait. In contrast, diet quality had no effect on body size but had a significant effect on relative investment in the mandibles and genae. These results indicate that the allometric intercepts of the mandible and genae alter in response to diet quality, i.e., allometric plasticity. However, diet quality had no effect on the growth of the horn. Thus, multiple sexual traits exhibited differences in plasticity as a result of larval nutrient condition in G. cornutus males.  相似文献   

9.
10.
Emlen DJ  Szafran Q  Corley LS  Dworkin I 《Heredity》2006,97(3):179-191
Beetle 'horns' are rigid outgrowths of the insect cuticle used as weapons in contests for access to mates. Relative to their body size, beetle horns can be enormous. They protrude from any of five different regions of the head or thorax; they are curved, straight, branched or bladed; and their development is often coupled with the nutrient environment (male dimorphism) or with sex (sexual dimorphism). Here, we show that this extraordinary diversity of horns can be distilled down to four trajectories of morphological change--horn location, shape, allometry and dimorphism--and we illustrate how the developmental mechanisms regulating horn growth could generate each of these types of horn evolution. Specifically, we review two developmental pathways known to regulate growth of morphological structures in Drosophila and other insects: a limb-patterning pathway that specifies the location and shape of a structure, and the insulin pathway, which modulates trait growth in response to larval nutrition. We summarize preliminary evidence indicating that these pathways are associated with the development of beetle horns, and we show how subtle changes in the relative activities of these two pathways would be sufficient to generate most of the extant diversity of horn forms. Our objective is to intuitively connect genotype with phenotype, and to advocate an informed 'candidate gene' approach to studies of the developmental basis of evolution. We end by using this insight from development to offer a solution to the long-standing mystery of the scarabs: the observation by Darwin, Lameere, Arrow and others that this one family of beetles appeared to have a 'special tendency' towards the evolution of horns.  相似文献   

11.
The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength.  相似文献   

12.
13.
SUMMARY The genetic accommodation of novel adaptive traits may be accompanied by the evolution of correlated traits that constrain adaptive evolution. Very little is known about the removal of maladaptive correlated traits. In the present study, body size was found to have evolved as a correlated trait during the artificial selection for a polyphenism and a monophenism, and the developmental basis underlying this correlated trait was investigated. The body size and coloration were found to be developmentally integrated by titers of the insect developmental hormone, juvenile hormone (JH). Attempts to uncouple the two traits resulted in the evolution of one of the body size determinants—the critical weight—but not the delay period whose evolution is constrained by JH titers. Thus, maladaptive correlated traits can be removed when multiple developmental modules exist, and the evolution of one or more of these modules is not constrained.  相似文献   

14.
《Journal of morphology》2017,278(12):1619-1627
Contests between same‐sex opponents over resources necessary for reproduction, as well interactions used to discern mate quality, often involve exaggerated traits wherein large individuals have disproportionately larger traits. This positive allometric scaling of weapons or signals facilitates communication during social interactions by accentuating body size differences between individuals. Typically, males carry these exaggerated traits, as males must compete over limited female gametes. However, in Nicrophorus beetles both males and females engage in physical contests over the vertebrate carcasses they need to provision and raise offspring. Male and female Nicrophorus beetles have extended clypeal membranes directly above their mandibles, which could serve as signals. We investigated the scaling relationships between clypeal membrane size and shape and body size for five species of North American burying beetle to determine whether clypeal membranes contain exaggerated body size information. We found that clypeal membranes for both sexes of all species scaled positively with body size (slope > 1). Three of the five species also displayed sexual dimorphism in aspects of clypeal membrane size and shape allometry despite lack of dimorphism in body size. In two dimorphic species, small male clypeal membranes were statistically indistinguishable from the female form. We conclude that colored clypeal membranes in Nicrophorus beetles do contain exaggerated body size information. Observed patterns of dimorphism suggest that males sometimes experience stronger selection on marking size and shape, which might be explained by life history differences among species.  相似文献   

15.
Burying beetles, Nicrophorus orbicollis, have facultative biparental care. They bury and prepare small vertebrate carcasses that provide food for their young. Here we establish the juvenile hormone (JH) profiles of paired females, paired males and single males and investigate some of the environmental and social factors that may affect these profiles. Before larvae hatch JH profiles of paired males and females were similar. However, after larvae hatch and during brood care, JH titers of females were very high and those of single males were significantly higher than those of paired males. We tested the hypothesis that higher JH was a response to the need for increased parental care by manipulating brood size. Although JH titers of single males caring for small versus large broods were not significantly different, when comparing JH titers and larval growth (a measure of parental effort), a significant positive correlation emerged. In contrast, we found that food quality had no effect on JH levels suggesting that increased feeding by males and females after carcass discovery cannot explain the elevation of JH. The regulation of JH in male burying beetles appears thus to be dependent on the presence of a mate and on critical stimuli from young.  相似文献   

16.
Exaggerated traits can be costly and are often trade-off against other characters, such as life-history traits. Thus, the evolution of an exaggerated trait is predicted to affect male life-history strategies. However, there has been very little experimental evidence of the impact of the evolution of sexually selected traits on life-history traits. This study investigated whether increased investment in exaggerated traits can generate evolutionary changes in the life-history strategy for armed males. Male flour beetles, Gnatocerus cornutus, have enlarged mandibles that are used in male-male competition, but females lack this character exaggeration completely. We subjected these weapons to 11 generations of bidirectional selection and found a correlated response in pupal survival but not in larval survival or adult longevity in the male. That is, selecting for male mandibles negatively impacted survival during the production of mandibles. There is no correlated response in the life-history traits of the female.  相似文献   

17.
Abstract.  The stag beetle, Lucanus cervus , is Britain's largest beetle, with a patchy distribution in southern England. The literature suggests that it displays exceptional size variation, particularly in the males, but no analysis of size inequality has ever been conducted. In the present study, stag beetle adults are measured and allometric relationships derived between various parameters and total body length. Most of the specimens found each year are fragments and head width can be used as a good predictor of total body length in each sex. Body size differs between years and between localities and male beetles show a greater degree of size inequality than females. However, L. cervus does not show greater inequality in size than many other beetle species and populations of males are composed of a relatively large number of small individuals. These males are not at a disadvantage in mating because it is the ratio of male : female size that determines mating success. Very large males are less successful in mating and it is suggested that lack of mating success may act as an additional constraint on mandible size in this species. Size variation is most likely caused by variation in larval food resources, coupled with variation in local climatic conditions.  相似文献   

18.
Darwin considered the horns of male beetles to be among the most striking examples of sexual selection. As with antlers in deer or elk, beetle horns scale positively with male body size, with the result that large males have disproportionately longer horns than small males. It is generally assumed that such scaling relationships (''static allometries'') are insensitive to short-term changes in the environment, and for this reason they are regularly used as diagnostic attributes of populations or species. Here I report breeding experiments on horned beetles that demonstrate that the scaling relationship between male horn length and body size changes when larval nutrition changes. Males reared on a low-quality diet had longer horn lengths at any given body size than sibling males reared on a high-quality diet. Such ''allometry plasticity'' may explain seasonal changes observed in this same scaling relationship in a natural population. These experiments demonstrate that scaling relationships of sexually selected traits can respond facultatively to variation in the environment, thereby revealing a new mechanism by which males regulate the production of exaggerated secondary sexual traits.  相似文献   

19.
External stressors disrupt physiological homeostasis; in insects, the response to stress may result in delayed development as the animal attempts to restore homeostasis before proceeding with its complex life cycle. Previous studies have demonstrated that exposure to stress leads to increased levels of the juvenile hormone (JH), a hormone responsible for maintaining the insect larval state. In Manduca sexta, JH is transported to target tissue by a high-affinity binding protein, hemolymph JH binding protein (hJHBP). Since JH titers are elevated in stressed Manduca, we examined levels of hJHBP to better understand (1) the role of JH in regulating hJHBP levels and (2) the hJHBP-regulated bioavailability of hormone at the target site. Fourth stadium Manduca (48 h post-ecdysis) were exposed for 24h to various stressors including nutritional deprivation, microbial infection, cutaneous injury, episodic movement, and temperature elevation. Insects raised on diets lacking nutritional content exhibited mean hJHBP levels that were less than half (45%) those of control insects. Similarly, insects injected with Escherichia coli demonstrated a 47% reduction in hJHBP titers. Cutaneous injury, episodic movement, and temperature elevation lowered hJHBP levels by 47%, 43%, and 38%, respectively. Total hemolymph protein concentration was not affected. After a stress event (injury), a 50% reduction in abundance of fat body hJHBP mRNA was observed within 4h; hJHBP levels did not drop until 24h after injury. Stress in the fourth stadium was manifest in fifth instars, with 100% of the injured insects displaying an extended larval stadium or failing to pupate. Computational modeling of the JH-hJHBP interaction indicates that unbound JH doubles in stressed insects. These results indicate that in response to stress larval hJHBP titers are significantly reduced, increasing JH bioavailability at the target site and thereby impacting development and survival of the insect. Treatment of unstressed insects with physiological doses of JH I did not affect hJHBP levels, suggesting that elevated JH levels were not solely responsible for the observed down-regulation in stressed insects.  相似文献   

20.
1. The succession of carrion-associated (necrophilous) insects on decomposing carrion is well documented. To exploit the changing nutritious and dynamic resources available throughout the carrion decomposition process, different species colonise and consume carrion in a predictable temporal sequence. The traits of these necrophilous insects should reflect their ecological strategies. Morphological traits of these insects, such as body size and wing size, however, have not previously been examined during active and advanced decomposition. 2. We used fourth-corner multivariate generalised linear models to identify insect community morphological trait patterns and to quantify their change through time on decomposing rabbit carcasses in grassland and woodland environments. 3. We found that larger-bodied species of flies and carrion-specialist beetles were associated with the early stages of decomposition. The morphological traits of ants, in contrast, showed no changes at carcasses through time and instead showed body size differences between grassland and woodland environments. 4. Our findings indicate that specialist flies and beetles that arrive early in the decomposition process possess traits that enable rapid discovery of carrion at a large scale. Generalist beetles and ants do not share this same trait and are instead adapted to locate and consume a wider variety of resources in their preferred habitat type at their local scale. 5. Our results provide insights into the morphological adaptations linked to the ecological strategies of distinct components of carrion insect communities. Further, our results offer insights into the community assembly dynamics that structure the communities of necrophilous insect species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号