首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.  相似文献   

2.
Many traits are genetically correlated with each other. Thus, selection that changes the mean value of one trait causes other traits to change as well. Recent comparative studies have emphasized the possible importance of such correlated responses in affecting the evolution of traits, including some behaviors, which are of little adaptive significance, or even maladaptive. However, it is also possible for traits with major effects on fitness, such as brain size, to evolve entirely by correlated response. Other traits that do not appear to have evolved at all may have been subject to much directional selection, simply to prevent their evolution by correlated response. The new interest in correlated responses reflects more rigorous attempts to consider the organism as a whole, rather than dissecting it into a number of questionably separable traits.  相似文献   

3.
Sexually selected exaggerated traits are often coupled with modifications in other nontarget traits. In insects with weapons, enlargements of nontarget characters that functionally support the weapon often occur (i.e. supportive traits). The support of sexual traits requires developmental coordination among functionally related multiple traits—an explicit example of morphological integration. The genetic theory predicts that developmental integration among different body modules, for which development is regulated via different sets of genes, is likely to be coordinated by pleiotropic factors. However, the developmental backgrounds of morphological integrations are largely unknown. We tested the hypothesis that the juvenile hormone (JH), as a pleiotropic factor, mediates the integration between exaggerated and supportive traits in an armed beetle Gnatocerus cornutus. During combat, males of this beetle use exaggerated mandibles to lift up their opponents with the supportive traits, that is, the head and prothoracic body parts. Application of methoprene, a JH analog (JHA), during the larval to prepupal period, induced the formation of large mandibles relative to the body sizes in males. Morphometric examination of nontarget traits elucidated an increase in the relative sizes of supportive traits, including the head and prothoracic body parts. In addition, reductions in the hind wing area and elytra length, which correspond to flight and reproductive abilities, were detected. Our findings are consistent with the genetic theory and support the idea that JH is a key pleiotropic factor that coordinates the developmental integration of exaggerated traits and supportive characters, as well as resource allocation trade‐offs.  相似文献   

4.
Understanding adaptive phenotypic variation is one of the most fundamental problems in evolutionary biology. Genes involved in adaptation are most likely those that affect traits most intimately connected to fitness: life-history traits. The genetics of quantitative trait variation (including life histories) is still poorly understood, but several studies suggest that (1) quantitative variation might be the result of variation in gene expression, rather than protein evolution, and (2) natural variation in gene expression underlies adaptation. The next step in studying the genetics of adaptive phenotypic variation is therefore an analysis of naturally occuring covariation of global gene expression and a life-history trait. Here, we report a microarray study addressing the covariation in larval gene expression and adult body weight, a life-history trait involved in adaptation. Natural populations of Drosophila melanogaster show adaptive geographic variation in adult body size, with larger animals at higher latitudes. Conditions during larval development also affect adult size with larger flies emerging at lower temperatures. We found statistically significant differences in normalized larval gene expression between geographic populations at one temperature (genetic variation) and within geographic populations between temperatures (developmental plasticity). Moreover, larval gene expression correlated highly with adult weight, explaining 81% of its natural variation. Of the genes that show a correlation of gene expression with adult weight, most are involved in cell growth or cell maintenance or are associated with growth pathways.  相似文献   

5.
Abstract Although pollinator-mediated natural selection has been measured on many floral traits and in many species, the extent to which selection is constrained from producing optimal floral phenotypes is less frequently studied. In particular, negative correlations between flower size and flower number are hypothesized to be a major constraint on the evolution of floral displays, yet few empirical studies have documented such a trade-off. To determine the potential for genetic constraints on the adaptive evolution of floral displays, I estimated the quantitative genetic basis of floral trait variation in two populations of Lobelia siphilitica . Restricted maximum likelihood (REML) analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for flower number and six measures of flower size. There was significant genetic variation for all seven floral traits in both populations. Flower number was negatively genetically correlated with four measures of flower size in one population and three measures in the other. When the genetic variance-covariance matrices were combined with field estimates of phenotypic selection gradients, the predicted multivariate evolutionary response was less than or opposite in sign to the selection gradient for flower number and five of six measures of flower size, suggesting genetic constraints on the evolution of these traits. More generally, my results indicate that the adaptive evolution of floral displays can be constrained by tradeoffs between flower size and number, as has been assumed by many theoretical models of floral evolution.  相似文献   

6.
Summary From a behavioural perspective on adaptive female choice, I developed a by-product runaway model of adaptive mate choice. The model illustrates the evolution of the tail size of peacocks. I consider the causal mechanisms of adaptive female choice: (1) why (ultimate reasons); (2) how (proximate mechanisms). Assumptions are developed based on these behavioural aspects. For (1) ultimate reasons, I assume that many male losers (low-fitness males) always occur due to genetic and environmental uncertainty (A-1). For (2) proximate mechanisms, I assume that losers tend to differ in the expression of a fitness-sensitive trait (an ultimate target, e.g. body size; A-2), that the fitness-sensitive trait correlates with a secondary sexual trait (a proximate cue, e.g. allometry in body size and tail size; (A-3), and that the cue trait has a genetic basis that is independent of the target trait (e.g. a genetic basis in tail ratio to body size; A-4). The model's results are: persistent female choice by means of a proximate cue (R-1); by-product selection on the independent genetic basis of the cue (R-2); and the non-adaptive or maladaptive runaway evolution of the male proximate cue (R-3). In this model, female mate preferences are non-arbitrary and adaptive, whereas the resulting evolution of male secondary sexual traits is non-adaptive in the sense of survival selection.  相似文献   

7.
The hypothesis that the morphological, physiological, and behavioral traits comprising the migratory syndrome in insects are genetically correlated through pleiotropic effects of genes controlling the titre of a common hormonal determinant is explored. Evidence that juvenile hormone (JH) influences the component traits of the migratory syndrome is presented, and thus JH is assumed to be the underlying, common determinant. However, readers are cautioned that this does not imply that JH is solely responsible for these traits, nor is this necessary for the arguments presented. For wing dimorphic taxa, the “correlated traits hypothesis” predicts covariance within wing morphs between JH titre and the proportion winged. Four simple genetic models for wing-morph determination are considered: single-locus with short-winged (SW) dominant; single-locus with long-winged (LW) dominant; polygenic, fixed threshold, shifting distribution; and polygenic, shifting threshold, fixed distribution. In each case, wing morphology is assumed to be a threshold trait with the liability being JH titre at some critical stage of development. All models predict covariation between %LW and the mean JH titre of at least one of the wing morphs, but the form and direction of the relationship depends critically on the genetic model used. The results suggest that we should expect the traits associated with the migratory syndrome, and hence the trade-offs associated with the evolution of wing dimorphism, to be correlated with proportion winged and, in this sense, to be frequency-dependent.  相似文献   

8.
Explaining the repeated evolution of similar sets of traits under similar environmental conditions is an important issue in evolutionary biology. The extreme alternative classes of explanations for correlated suites of traits are optimal adaptation and genetic constraint resulting from pleiotropy. Adaptive explanations presume that individual traits are free to evolve to their local optima and that convergent evolution represents particularly adaptive combinations of traits. Alternatively, if pleiotropy is strong and difficult to break, strong selection on one or a few particularly important characters would be expected to result in consistent correlated evolution of associated traits. If pleiotropy is common, we predict that the pattern of divergence among populations will consistently reflect the within-population genetic architecture. To test the idea that the multivariate life-history phenotype is largely a byproduct of strong selection on body size, we imposed divergent artificial selection on size at maturity upon two populations of the cladoceran Daphnia pulicaria, chosen on the basis of their extreme divergence in body size. Overall, the trajectory of divergence between the two natural populations did not differ from that predicted by the genetic architecture within each population. However, the pattern of correlated responses suggested the presence of strong pleiotropic constraints only for adult body size and not for other life-history traits. One trait, offspring size, appears to have evolved in a way different from that expected from the within-population genetic architecture and may be under stabilizing selection.  相似文献   

9.
Trade-offs between developing body parts may contribute to variation in allometric scaling relationships in a variety of taxa. Experimental evidence indicates that both circulating levels of juvenile hormone (JH) and sensitivities of developing body parts to JH can influence morphology in polyphenic insects. However, the extent to which JH may regulate both the development of traits that scale continuously with body size and trade-offs between these traits is largely unknown. Here, I present evidence that the JH analog methoprene applied to final instar larvae of a stalk-eyed fly (Cyrtodiopsis dalmanni) can induce males to produce larger eye-stalks relative to their body size. Examination of testis growth, sperm transfer, and egg maturation indicates that JH induces a trade-off between eye-span and gonad development in adult males, but not females. Age at sexual maturity was unaffected by larval JH applications to either sex. Collectively, these results are consistent with JH-mediated allocation of resources to eye-span at the expense of testes, and indicate potential costs for the production of an exaggerated trait.  相似文献   

10.
Hormone response to bidirectional selection on social behavior   总被引:1,自引:0,他引:1  
Behavior is a quantitative trait determined by multiple genes. Some of these genes may have effects from early development and onward by influencing hormonal systems that are active during different life-stages leading to complex associations, or suites, of traits. Honey bees (Apis mellifera) have been used extensively in experiments on the genetic and hormonal control of complex social behavior, but the relationships between their early developmental processes and adult behavioral variation are not well understood. Bidirectional selective breeding on social food-storage behavior produced two honey bee strains, each with several sublines, that differ in an associated suite of anatomical, physiological, and behavioral traits found in unselected wild type bees. Using these genotypes, we document strain-specific changes during larval, pupal, and early adult life-stages for the central insect hormones juvenile hormone (JH) and ecdysteroids. Strain differences correlate with variation in female reproductive anatomy (ovary size), which can be influenced by JH during development, and with secretion rates of ecdysteroid from the ovaries of adults. Ovary size was previously assigned to the suite of traits of honey bee food-storage behavior. Our findings support that bidirectional selection on honey bee social behavior acted on pleiotropic gene networks. These networks may bias a bee's adult phenotype by endocrine effects on early developmental processes that regulate variation in reproductive traits.  相似文献   

11.
Developmental mechanisms of threshold evolution in a polyphenic beetle   总被引:4,自引:0,他引:4  
Polyphenic development is thought to play a pivotal role in the origin of morphological novelties. However, little is known about how polyphenisms evolve in natural populations, the developmental mechanisms that may mediate such evolution, and the consequences of such modification for patterns of morphological variation. Here we examine the developmental mechanisms of polyphenism evolution in highly divergent natural populations of the dung beetle, Onthophagus taurus. Males of this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions during larval life do not reach this threshold size and remain hornless. Exotic populations of O. taurus have diverged dramatically in body size thresholds in less than 40 years since introduction to new habitats, resulting in the expression of highly divergent and novel horn length-body size scaling relationships in these populations. Here we show that larvae of populations that have evolved a larger threshold body size (1) have to accumulate greater mass to become competent to express the horned morph, (2) require more time to complete the final instar, (3) are less sensitive to the juvenile hormone (JH) analogue methoprene, and (4) exhibit a delay in the sensitive period for methoprene relative to other developmental events. JH has been shown previously to control horn expression in this species. Our results show that threshold evolution may be mediated via changes in the degree and timing of sensitivity to JH and may result in correlated changes in the dynamics and duration of larval development. Strain-specific differences in JH sensitivity have previously been demonstrated in other insects. However, to the best of our knowledge this is the first demonstration that changes in the timing of the sensitive period for JH may play an equally important role in the evolution of novel thresholds. We discuss our findings in the context of the developmental regulatory mechanisms that underlie polyphenic development and use our results to explore the consequences of, and constraints on, polyphenism evolution in nature.  相似文献   

12.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   

13.
Morphological traits are often genetically and/or phenotypically correlated with each other and such covariation can have an important influence on the evolution of individual traits. The strong positive relationship between brain size and body size in vertebrates has attracted a lot of interest, and much debate has surrounded the study of the factors responsible for the allometric relationship between these two traits. Here, we use comparative analyses of the Tanganyikan cichlid adaptive radiation to investigate the patterns of evolution for brain size and body size separately. We found that body size exhibited recent bursts of rapid evolution, a pattern that is consistent with divergence linked to ecological specialization. Brain weight on the other hand, showed no bursts of divergence but rather evolved in a gradual manner. Our results thus show that even highly genetically correlated traits can present markedly different patterns of evolution, hence interpreting patterns of evolution of traits from correlations in extant taxa can be misleading. Furthermore, our results suggest, contrary to expectations from theory, that brain size does not play a key role during adaptive radiation.  相似文献   

14.
Parents can influence the phenotypes of their offspring via a number of mechanisms. In harvester ants, whether female progeny develop into workers or daughter queens is strongly influenced by the age and temperature conditions experienced by their mother, which is associated with variation in maternal ecdysteroid deposition in fertilized eggs. In many insects, juvenile hormone (JH) is antagonistic to ecdysteroid release, suggesting that seasonal and age-based variation in maternal JH titers may explain maternal effects on offspring size and reproductive caste. To test this hypothesis, we artificially increased maternal JH titers with methoprene, a JH analog, in laboratory colonies of two Pogonomyrmex populations exhibiting genetic caste determination. Increasing maternal JH resulted in a 50% increase in worker body size, as well as a sharp reduction in total number of progeny reared, but did not alter the genotype of progeny reared to adulthood. The intergenerational effect of JH manipulation was not mediated by a reduction in ecdysteroid deposition into eggs; instead, changes in egg size, trophic egg availability or brood/worker ratio may have altered the nutritional environment of developing larvae. Egg ecdysteroid content was significantly negatively correlated with natural variation in worker body size, however, suggesting that there are multiple independent routes by which queens can modify offspring phenotypes.  相似文献   

15.
Migratory tendency in insects is a complex trait, composed of a suite of correlated behavioural, physiological, morphological and life history traits. We investigate the genetic and physiological basis of the coevolution of this suite of traits using laboratory lines of the wing dimorphic cricket, Gryllus firmus, selected for increasing and decreasing incidence of macroptery. Selection on wing morphology has produced strong direct responses in proportion macropterous as well as correlated (indirect) responses in wing muscle histolysis, flight propensity and fecundity. We investigate the hypothesis that these responses have been mediated by changes in the metabolism of juvenile hormone (JH) during the final nymphal stadium (the critical period for wing morph determination). Previous studies of Gryllus sp. have established that JH titre in this period is determined primarily by the activity of the degradative enzyme, juvenile hormone esterase (JHE). Assays of JHE activity in the final nymphal stadium of the replicated control and selected lines demonstrate highly significant differences in both mean activity and the probability of macroptery for a given level of activity (i.e., the threshold activity required to induce wing formation). These correlated responses in JH metabolism support the general hypothesis that the correlations among traits determining migratory tendency result at least in part from the common influence of JH during the final nymphal stadium. We discuss these results in the context of the quantitative genetic model for the evolution of polygenic, dichotomous traits (the threshold model), and present four general predictions concerning the coevolution of traits associated with ecological (i.e., trophic, life history, behavioural) dimorphisms.  相似文献   

16.
Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.  相似文献   

17.
18.
The evolution of inflorescence size, a key trait in reproductive success, was studied in the genus Acer under a perspective of adaptive evolution. Breeding systems, hypothesized to indicate different levels of mating competition, were considered as the selective scenarios defining different optima of inflorescence size. Larger inflorescences, which increase male fitness by generating larger floral displays, were hypothesized to be selected under scenarios with higher competition with unisexuals. An identical approach was used to test if the same selective regimes could be driving the evolution of leaf size, a vegetative trait that was found to be correlated with inflorescence size. A Brownian motion model of inflorescence/leaf-size evolution (which cannot distinguish between changes caused by pure drift processes and changes caused by natural selection in rapidly and randomly changing environments) was compared with several adaptive Ornstein-Uhlenbeck (OU) models, which can quantify the effects of both stochasticity and natural selection. The best-fitting model for inflorescence/leaf-size evolution was an OU model with three optima that increased with the level of mating competition. Both traits evolved under the same selective regimes and in the same direction, confirming a pattern of correlated evolution. These results show that a selective regime hypothetically related to the evolution of a reproductive trait can also explain the evolution of a vegetative trait.  相似文献   

19.
The ability to recognise and discriminate between heterospecific and conspecific individuals plays an essential role in mate choice, reproductive isolation and thus species diversification. Many animals discriminate based on advertisement calls, whose evolution may be driven by a variety of forces such as natural selection, sexual selection or stochastic processes. The relative importance of stochastic processes acting on a given trait is usually correlated with its phylogenetic signal. Mate-recognition signals are complex traits composed of multiple features that could potentially respond independently to evolutionary forces. The advertisement call of anurans is used in species recognition and mate choice. In this study, we estimate the phylogenetic signal for body size and a suite of traits describing the male advertisement call from dart-poison frogs (Anura: Dendrobatidae). We found a surprisingly high phylogenetic signal for all call traits. In addition, call traits varied in their degree of phylogenetic signal, suggesting that evolutionary forces have been acting differently on different traits. Pulse duration showed the strongest phylogenetic signal. Peak frequency and body size were correlated and presented high phylogenetic signal indicating that the evolution of one trait may be driving or constraining the other. Since most variation in call traits can be explained by the phylogenetic history of the species, we cannot reject the hypothesis that stochastic processes account for significant evolutionary divergence in frog calls.  相似文献   

20.
SUMMARY Wood-dwelling termites are characterized by an extremely high and unique developmental flexibility that allows workers, which are immatures, to explore all caste options. The endocrine signatures underlying this flexibility are only vaguely understood. We determined juvenile hormone (JH) and ecdysteroid hemolymph titers during postembryonic development and in terminal instars of the drywood termite Cryptotermes secundus using field and laboratory colonies. Postembryonic development is characterized by a drop in JH titers at the transition from larval (individuals without wing buds) to nymphal (individuals with wing buds) instars. JH titers were low in winged sexuals and reproducing primary reproductives (<200 pg/μl) but were by an order of magnitude higher in neotenic replacement reproductives. The unique regressive molts of termites seem to be characterized by elevated JH titers, compared with progressive or stationary molts. Ecdysteroid titers were generally low in nymphal instars and in primary reproductives (<50 pg/μl). It was only during the third and fourth nymphal instars and in winged sexuals where some individuals showed elevated ecdysteroid titers. These results are the most comprehensive endocrinological data set available for any lower termite, with the potential to serve as baseline for understanding the extreme developmental flexibility underlying the evolution of social life in termites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号