首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and 2 to generate an overall signalling output.  相似文献   

2.
3.
IEX-1 is an early response and NF-kappaB target gene implicated in the regulation of cellular viability. We show here that IEX-1 is a substrate for ERKs and that IEX-1 and ERK regulate each other's activities. IEX-1 was isolated by phosphorylation screening with active ERK2 and found subsequently phosphorylated in vivo upon ERK activation. IEX-1 interacts with phosphorylated ERKs but not with c-jun N-terminal kinase (JNK) or p38. Upon phosphorylation by ERKs, IEX-1 acquires the ability to inhibit cell death induced by various stimuli. In turn, IEX-1 potentiates ERK activation in response to various growth factors. By using various IEX-1 mutants in which the ERK phosphoacceptor and/or ERK docking sites were mutated, we show that the IEX-1 pro-survival effect is dependent on its phosphorylation state but not on its ability to potentiate ERK activation. Conversely, IEX-1-induced modulation of ERK activation requires ERK-IEX-1 association but is independent of IEX-1 phosphorylation. Thus, IEX-1 is a new type of ERK substrate that has a dual role in ERK signaling by acting both as an ERK downstream effector mediating survival and as a regulator of ERK activation.  相似文献   

4.
5.
MAPK signalling: ERK5 versus ERK1/2   总被引:8,自引:0,他引:8       下载免费PDF全文
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and, similar to ERK1/2, has the Thr-Glu-Tyr (TEY) activation motif. Both ERK5 and ERK1/2 are activated by growth factors and have an important role in the regulation of cell proliferation and cell differentiation. Moreover, both the ERK5 and the ERK1/2 pathways are sensitive to PD98059 and U0126, which are two well-known inhibitors of the ERK pathway. Despite these similarities, recent studies have revealed distinctive features of the ERK5 pathway: ERK5 has a key role in cardiovascular development and neural differentiation; ERK5 nuclear translocation is controlled by its own nuclear localizing and nuclear export activities; and the carboxy-terminal half of ERK5, which follows its kinase catalytic domain, has a unique function.  相似文献   

6.
The role and regulation of signal transduction pathways in proliferation and differentiation of intestinal epithelial cells are still poorly understood. However, growing evidences have been recently accumulated demostrating that mitogen-activated protein kinases (MAPKs) play a pivotal function in the normal development of intestine. We have investigated, in the intestinal cell line HT-29, the regulation (namely activity and phosphorylation degree) of MAP kinases ERK 1 (p44) and ERK 2 (p42) during differentiation. Addition of fetal calf serum to HT-29 undifferentiated resting cells caused a rapid phosphorylation of both ERKs and an increase of their specific kinase activity. Moreover, nuclear translocation of ERK 1 and ERK 2 occurred concurrently to their activation, leading to the conclusion that ERK 1 and ERK 2 are classically regulated when quiescent HT-29 cells are induced to proliferate. Butyrate addition to the intestinal cell line resulted in terminal differentiation and in a selective down-regulation of ERK 2 activity (and phosphorylation degree) without any effect on ERK 1. Conversely, when HT-29 cells were differentiated by repeated passages in a glucose-free medium, we observed a progressive dephosphorylation and inactivation of p42 and p44 kinases along with the failure of serum to activate both the enzymes. Our findings suggest that, during the differentiation of intestinal cells, remarkable changes occur in ERK 1 and ERK 2 control mechanisms leading to an unresponsivness of MAP kinase pathway.  相似文献   

7.
The ERK cascade     
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.  相似文献   

8.
9.
Mitogen-activated protein kinases ERK1 and ERK2 have been implicated in various pathophysiological events of the CNS,but their specific roles in cell processes under physiologic and pathological condit...  相似文献   

10.
In response to epidermal growth factor (EGF), the mitogen-activated protein kinase ERK2 translocates into the nucleus. To probe the mechanisms regulating the subcellular localization of ERK2, we used live cell imaging to examine the interaction between MEK1 and ERK2. Fluorescence resonance energy transfer (FRET) studies show that MEK1 and ERK2 directly interact and demonstrate that this interaction in the cytoplasm is largely responsible for cytoplasmic retention of ERK2. Stimulation with EGF caused loss of FRET as ERK separated from MEK and moved into the nucleus. FRET was recovered as ERK returned to the cytosol, indicating ERK reassociation with MEK in the cytoplasm. The EGF-induced transit of ERK through the nucleus was complete within 20 min, and there was no significant movement of MEK into the nucleus. Fluorescence recovery after photobleaching experiments was used to assess the rate of movement of MEK and ERK. The steady-state rate of ERK entry into the nucleus in resting cells was energy-independent and greater than the rate of ERK entry upon EGF stimulation. This suggests that the rate constant for ERK transport across the nuclear membrane is not limiting nuclear entry. Thus, we suggest that the movement of ERK into and out of the nucleus in response to agonist occurs primarily by diffusion and is controlled by interactions with binding partners in the cytosol and nucleus. No evidence of ERK dimerization was detected by FRET methods; the kinetics for nucleocytoplasmic transport were unaffected by mutations in the ERK putative dimerization domain.  相似文献   

11.
The mammalian dual-specificity protein-tyrosine phosphatase VHR (for VH1-related) has been identified as a novel regulator of extracellular regulated kinases (ERKs). To identify potential cellular substrates of VHR, covalently immobilized mutant VHR protein was employed as an affinity trap. A tyrosine-phosphorylated protein(s) of approximately 42 kDa was specifically adsorbed by the affinity column and identified as ERK1 and ERK2. Subsequent kinetic analyses and transfection studies demonstrated that VHR specifically dephosphorylates and inactivates ERK1 and ERK2 in vitro and in vivo. Only the native structure of phosphorylated ERK was recognized by VHR and was inactivated with a second-order rate constant of 40,000 M-1 s-1. VHR was found to dephosphorylate endogenous ERK, but not p38 and JNK. Immunodepletion of endogenous VHR eliminated the dephosphorylation of cellular ERK. Transfection studies in COS-1 cells demonstrated that in vivo phosphorylation of epidermal growth factor-stimulated ERK depended on VHR protein levels. Overexpression above endogenous levels of VHR led to accelerated ERK inactivation, but did not alter the normal activation of ERK. Unique among reported mitogen activated protein kinase phosphatases, VHR is constitutively expressed, localized to the nucleus, and tyrosine-specific. This study is the first to report the identification of authentic substrates of dual-specificity phosphatases utilizing affinity absorbents and is the first to identify a nuclear, constitutively expressed, and tyrosine-specific ERK phosphatase. The data strongly suggest that VHR is responsible for the rapid inactivation of ERK following stimulation and for its repression in quiescent cells.  相似文献   

12.
ERK5 and ERK2 cooperate to regulate NF-kappaB and cell transformation   总被引:8,自引:0,他引:8  
We have previously demonstrated an involvement of MEK5 and ERK5 in RafBXB-stimulated focus formation in NIH3T3 cells. We find here that MEK5 and ERK5 cooperate with the RafBXB effectors MEK1/2 and ERK1/2 to induce foci. To further understand MEK5-ERK5-dependent signaling, we examined potential MEK5-ERK5 effectors that might influence focus-forming activity. Consistent with results from our focus-formation assays, constitutively active variants of MEK5 and MEK1 synergize to activate NF-kappaB, and MEK5 and ERK5 are required for activation of NF-kappaB by RafBXB. The MEK5-ERK5 pathway is also sufficient to activate both NF-kappaB and p90 ribosomal S6 kinase. Our results support the hypothesis that NF-kappaB and p90 ribosomal S6 kinase are involved in MEK5-ERK5-dependent focus formation and may serve as integration points for ERK5 and ERK1/2 signaling.  相似文献   

13.
Two epidermal growth factor-stimulated protein kinases that correspond to ERK1 and ERK2 have been purified from human epidermoid carcinoma cells (Northwood, I. C., Gonzalez, F. A., Wartmann, M., Raden, D. L., and Davis, R. J. (1991) J. Biol. Chem. 266, 15266-15276). A consensus primary sequence for substrates of ERK1 has been identified as -Pro-Leu-Ser/Thr-Pro- (Alvarez, E., Northwood, I. C., Gonzalez, F. A., Latour, D. A., Seth, A., Abate, C., Curran, T., and Davis, R. J. (1991) J. Biol. Chem. 266, 15277-15285). However, the structural determinants for substrate recognition are not understood. We performed a systematic analysis of the effect of point mutations in the primary sequence of peptide substrates on the rate of phosphorylation by ERK1 and ERK2. The results of this investigation demonstrate that the substrate specificities of the ERK1 and ERK2 protein kinases are very similar. We propose that the primary sequence of substrates for ERK1 and ERK2 protein kinases can be generalized as -Pro-Xaan-Ser/Thr-Pro- (where Xaa is a neutral or basic amino acid and n = 1 or 2).  相似文献   

14.
Recent reports suggest that extracellular signal-regulated kinase (ERK1) and ERK2 mitogen-activated protein kinases (MAPK) may direct specific biological functions under certain contexts. In this study, we investigated the role of early and sustained epidermal growth factor (EGF) stimulation on long-term hepatocyte differentiation and the possible role of ERK1 and ERK2 in this process. We demonstrate a long-term survival and an elevated level of differentiation up to 3 weeks. The differentiation state of hepatocytes is supported by sustained expression of aldolase B, albumin, and the detoxifying enzymes CYP1A2, 2B2, and 3A23. Similarly to freshly isolated cells, cultured hepatocytes also retain the ability to respond to 3-methylcholanthrene (3MC) and phenobarbital (PB), two known CYP inducers. In addition, we show evidence that continuous MAPK/ERK kinase (MEK) inhibition enhances the level of differentiation. Using RNA interference approaches against ERK1 and ERK2, we demonstrate that this effect requires both ERK1 and ERK2 activity, whereas the specific ERK1 knockdown promotes cell survival and the specific ERK2 knockdown regulates cell proliferation. In conclusion, we demonstrate that early and sustained EGF stimulation greatly extends long-term hepatocyte survival and differentiation, and that inhibition of the ERK1/2 MAPK pathway potentiates these pro-survival/pro-differentiation phenotypes. We clearly attest that specific ERK1 and ERK2 MAPKs determine hepatocyte survival and proliferation, respectively, whereas dual inhibition is required to stabilize a highly differentiated state.  相似文献   

15.
16.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. A number of studies have shown that the Ras/Raf/ERK1/2 (extracellular signal-regulated kinase) signaling pathway plays important roles in the genesis of neural progenitors, learning and memory. Ras/Raf/ERK1/2 and ERK5 have also been shown to have death-promoting apoptotic roles in neural cells. Recent studies have shown a possible association between neural cell death and autism. In addition, two recent studies reported that a deletion of a locus on chromosome 16, which included the mitogen-activated protein kinase 3 (MAPK3) gene that encodes ERK1, is associated with autism. Most recently, our laboratory detected that Ras/Raf/ERK1/2 signaling activities were significantly enhanced in the brain of BTBR mice that model autism, as they exhibit many autism-like behaviors. We thus hypothesized that Ras/Raf/ERK1/2 signaling and ERK5 could be abnormally regulated in the brain of autistic subjects. In this study, we show that the expression of Ras protein was significantly elevated in the frontal cortex of autistic subjects. C-Raf phosphorylation was increased in the frontal cortex, while both C-Raf and A-Raf activities were enhanced in the cerebellum of autistic subjects. We also detected that both the protein expression and activities of ERK1/2 were significantly upregulated in the frontal cortex of autistic subjects, but not in the cerebellum. Furthermore, we showed that ERK5 protein expression is upregulated in both frontal cortex and cerebellum of autistic subjects. These results suggest that the upregulation of Ras/Raf/ERK1/2 signaling and ERK5 activities mainly found in the frontal cortex of autistic subjects may be critically involved in the pathogenesis of autism.  相似文献   

17.
18.
ERK pathway positively regulates the expression of Sprouty genes   总被引:6,自引:0,他引:6  
Sprouty was originally identified as an inhibitor of Drosophila development-associated receptor tyrosine kinase (RTK) signaling. Although RTK signaling has been shown to induce Sprouty gene expression, the precise induction pathway downstream of RTK remains unclear. As RTK signaling pathway includes activation of extracellular signal-regulated kinases (ERKs), we have examined a correlation between activation of ERKs and induction of Sprouty gene expression. All reagents which induce the activation of ERKs induce Sprouty gene expression; these agents include not only growth factors which bind to RTK but also phorbol 12-myristate-13-acetate and active Raf-1 kinase. Furthermore, the Sprouty gene expression induced by all those agents is totally suppressed when the cells are pretreated with specific inhibitors of ERK kinase (MEK). Human tumor cells which exhibit constitutive activation of ERKs show elevated expression of Sprouty genes, which is abolished by treatment of these cells with MEK inhibitors. All these findings clearly indicate that Sprouty gene expression is positively regulated by the ERK pathway downstream of RTK.  相似文献   

19.
The production of phosphatidic acid plays a crucial role in the activation of the ERK cascade. This role was linked to the binding of phosphatidate to a specific polybasic site within the kinase domain of Raf-1. Here we show that phosphatidate promotes ERK phosphorylation in intact cells but does not activate Raf in vitro. The kinase suppressor of Ras (KSR) contains a sequence homologous to the phosphatidate binding site of Raf-1. Direct binding of phosphatidate to synthetic peptides derived from the sequences of the binding domains of Raf-1 and KSR was demonstrated by spectroscopic techniques. The specificity of these interactions was confirmed using synthetic lipids and mutated peptides in which the core of the phosphatidic acid binding domain was disrupted. Insulin and exogenous dioleoyl phosphatidate induced a rapid translocation of a mouse KSR1-EGFP construct to the plasma membrane of HIRcB cells. Mutation of two arginines located in the core of the putative phosphatidate binding site abolished dioleoyl phosphatidate- and insulin-induced translocation of KSR1. Overexpression of the mutant KSR1 in HIRcB cells inhibited insulin-dependent MEK and ERK phosphorylation. The addition of dioleoyl phosphatidate or insulin increased the co-localization of KSR1 and H-Ras and promoted the formation of plasma membrane patches enriched in both proteins and phosphatidic acid. These results, in conjunction with our previous work, suggest the formation of phosphatidate-enriched membrane microdomains that contain all components of the ERK cascade. We propose that these domains act as molecular scaffolds in the coupling of signaling events.  相似文献   

20.
Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. Upon stimulation by αMSH, MC1R triggers the cAMP and ERK1/ERK2 MAPK pathways. In mouse melanocytes, ERK activation by αMSH binding to Mc1r depends on cAMP, and melanocytes are considered a paradigm for cAMP-dependent ERK activation. However, human MC1R variants associated with red hair, fair skin [red hair color (RHC) phenotype], and increased skin cancer risk display reduced cAMP signaling but activate ERKs as efficiently as wild type in heterologous cells, suggesting independent signaling to ERKs and cAMP in human melanocytes. We show that MC1R signaling activated the ERK pathway in normal human melanocytes and melanoma cells expressing physiological levels of endogenous RHC variants. ERK activation was comparable for wild-type and mutant MC1R and was independent on cAMP because it was neither triggered by stimulation of cAMP synthesis with forskolin nor blocked by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine. Stimulation of MC1R with αMSH did not lead to protein kinase C activation and ERK activation was unaffected by protein kinase C inhibitors. Conversely, pharmacological interference, small interfering RNA studies, expression profiles, and functional reconstitution experiments showed that αMSH-induced ERK activation resulted from Src tyrosine kinase-mediated transactivation of the stem cell factor receptor, a receptor tyrosine kinase essential for proliferation, differentiation, and survival of melanocyte precursors, thus demonstrating a functional link between the stem cell factor receptor and MC1R. Moreover, this transactivation phenomenon is unique because it is unaffected by natural mutations impairing canonical MC1R signaling through the cAMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号