首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Regulation of flowering in Arabidopsis by an FLC homologue   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

4.
5.
The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.  相似文献   

6.
7.
The acetylation level of histones on lysine residues regulated by histone acetyltransferases and histone deacetylases plays an important but under‐studied role in the control of gene expression in plants. With the aim of characterizing the Arabidopsis RPD3/HDA1 family histone deacetylase HDA5, we present evidence showing that HDA5 displays deacetylase activity. Mutants defective in the expression of HDA5 displayed a late‐flowering phenotype. Expression of the flowering repressor genes FLC and MAF1 was up‐regulated in hda5 mutants. Furthermore, the gene activation markers, histone H3 acetylation and H3K4 trimethylation on FLC and MAF1 chromatin were increased in hda51 mutants. Chromatin immunoprecipitation analysis showed that HDA5 binds to the chromatin of FLC and MAF1. Bimolecular fluorescence complementation assays and co‐immunoprecipitation assays showed that HDA5 interacts with FVE, FLD and HDA6, indicating that these proteins are present in a protein complex involved in the regulation of flowering time. Comparing gene expression profiles of hda5 and hda6 mutants by RNA‐seq revealed that HDA5 and HDA6 co‐regulate gene expression in multiple development processes and pathways.  相似文献   

8.
Species share homologous genes to a large extent, but it isnot yet known to what degree the same loci have been targetsfor natural selection in different species. Natural variationin flowering time is determined to a large degree by 2 genes,FLOWERING LOCUS C and FRIGIDA, in Arabidopsis thaliana. Here,we examine whether FRIGIDA has a role in differences in floweringtime between and within natural populations of Arabidopsis lyrata,a close outcrossing perennial relative of A. thaliana. We found2 FRIGIDA sequence variants producing potentially functionalproteins but with a length difference of 14 amino acids. Thesevariants conferred a 15-day difference in flowering time inan association experiment in 2 Scandinavian populations. Thedifference in flowering time between alleles was confirmed withtransformation to A. thaliana. Because the north European late-floweringpopulations harbor both late- and early sequence variants atintermediate frequencies and the late-flowering variant is mostfrequent in the southern early flowering European population,other genetic factors must be responsible for the floweringtime differences between the populations. The length polymorphismoccurs at high frequencies also in several North American populations.The occurrence of functional variants at intermediate frequenciesin several populations suggests that the variation may be maintainedby balancing selection. This is in contrast to A. thaliana,where independent loss-of-function mutations at the FRIGIDAgene are responsible for differences between populations andlocal adaptation.  相似文献   

9.
The Arabidopsis FLOWERING LOCUS C (FLC) gene encodes a MADS box protein that acts as a dose-dependent repressor of flowering. Mutants and ecotypes with elevated expression of FLC are late flowering and vernalization responsive. In this study we describe an early flowering mutant in the C24 ecotype, flc expressor (flx), that has reduced expression of FLC. FLX encodes a protein of unknown function with putative leucine zipper domains. FLX is required for FRIGIDA (FRI)-mediated activation of FLC but not for activation of FLC in autonomous pathway mutants. FLX is also required for expression of the FLC paralogs MADS AFFECTING FLOWERING 1 (MAF1) and MAF2.  相似文献   

10.
The µ opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing in rodents and humans, with dozens of alternatively spliced variants of the OPRM1 gene. The present studies establish a SYBR green quantitative PCR (qPCR) assay to more accurately quantify mouse OPRM1 splice variant mRNAs. Using these qPCR assays, we examined the expression of OPRM1 splice variant mRNAs in selected brain regions of four inbred mouse strains displaying differences in µ opioid-induced tolerance and physical dependence: C56BL/6J, 129P3/J, SJL/J and SWR/J. The complete mRNA expression profiles of the OPRM1 splice variants reveal marked differences of the variant mRNA expression among the brain regions in each mouse strain, suggesting region-specific alternative splicing of the OPRM1 gene. The expression of many variants was also strain-specific, implying a genetic influence on OPRM1 alternative splicing. The expression levels of a number of the variant mRNAs in certain brain regions appear to correlate with strain sensitivities to morphine analgesia, tolerance and physical dependence in four mouse strains.  相似文献   

11.
Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.  相似文献   

12.
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.  相似文献   

13.
14.
15.
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.  相似文献   

16.
Histone acetylation is an important posttranslational modification associated with gene activation. In Arabidopsis, two MYST histone acetyltransferases HAM1 and HAM2 work redundantly to acetylate histone H4 lysine 5 (H4K5ace) in vitro. The double mutant ham1/ham2 is lethal, which suggests the critical role of HAM1 and HAM2 in development. Here, we used an artificial microRNA (amiRNA) strategy in Arabidopsis to uncover a novel function of HAM1 and HAM2. The amiRNA-HAM1/2 transgenic plants showed early flowering and reduced fertility. In addition, they responded normally to photoperiod, gibberellic acid treatment, and vernalization. The expression of flowering-repressor FLOWERING LOCUS C (FLC) and its homologues, MADS-box Affecting Flowering genes 3/4 (MAF3/4), were decreased in amiRNA-HAM1/2 lines. HAM1 overexpression caused late flowering and elevated expression of FLC and MAF3/4. Mutation of FLC almost rescued the late flowering with HAM1 overexpression, which suggests that HAM1 regulation of flowering time depended on FLC. Global H4 acetylation was decreased in amiRNA-HAM1/2 lines, but increased in HAM1-OE lines, which further confirmed the acetyltransferase activity of HAM1 in vivo. Chromatin immunoprecipitation revealed that H4 hyperacetylation and H4K5ace at FLC and MAF3/4 were less abundant in amiRNA-HAM1/2 lines than the wild type, but were enriched in HAM1-OE lines. Thus, HAM1 and HAM2 may affect flowering time by epigenetic modification of FLC and MAF3/4 chromatins at H4K5 acetylation.  相似文献   

17.
UV‐B is a high‐energy component of the solar radiation perceived by the plant and induces a number of modifications in plant growth and development, including changes in flowering time. However, the molecular mechanisms underlying these changes are largely unknown. In the present work, we demonstrate that Arabidopsis plants grown under white light supplemented with UV‐B show a delay in flowering time, and this developmental reprogramming is mediated by the UVR8 photoreceptor. Using a combination of gene expression analyses and UV‐B irradiation of different flowering mutants, we gained insight into the pathways involved in the observed flowering time delay in UV‐B‐exposed Arabidopsis plants. We provide evidence that UV‐B light downregulates the expression of MSI1 and CLF, two of the components of the polycomb repressive complex 2, which in consequence drives a decrease in H3K27me3 histone methylation of MIR156 and FLC genes. Modification in the expression of several flowering time genes as a consequence of the decrease in the polycomb repressive complex 2 activity was also determined. UV‐B exposure of flowering mutants supports the involvement of this complex in the observed delay in flowering time, mostly through the age pathway.  相似文献   

18.
Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a ‘weight’ model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.  相似文献   

19.
20.

Background

The SWR1 complex is important for the deposition of histone variant H2A.Z into chromatin necessary to robustly regulate gene expression during growth and development. In Arabidopsis thaliana, the catalytic subunit of the SWR1-like complex, encoded by PIE1 (PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1), has been shown to function in multiple developmental processes including flowering time pathways and petal number regulation. However, the function of the PIE1 orthologs in monocots remains unknown.

Methodology/Findings

We report the identification of the rice (Oryza sativa) ortholog, OsPIE1. Although OsPIE1 does not exhibit a conserved exon/intron structure as Arabidopsis PIE1, its encoded protein is highly similar to PIE1, sharing 53.9% amino acid sequence identity. OsPIE1 also has a very similar expression pattern as PIE1. Furthermore, transgenic expression of OsPIE1 completely rescued both early flowering and extra petal number phenotypes of the Arabidopsis pie1-2 mutant. However, homozygous T-DNA insertional mutants of OsPIE1 in rice were embryonically lethal, in contrast to the viable mutants in the orthologous genes for yeast, Drosophila and Arabidopsis (Swr1, DOMINO and PIE1, respectively).

Conclusions/Significance

Taken together, our results suggest that OsPIE1 is the rice ortholog of Arabidopsis PIE1 and plays an essential role in rice embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号