首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 15N composition of the dominant form of dissolved inorganic nitrogen (DIN) was determined in upland groundwater, riparian groundwater, and stream water of the Barro Branco catchment, Amazônas, Brazil. The 15N composition of organic nitrogen in riparian and upland leaf litter was also determined. The data for these waters could be divided into three groups: upland groundwater DIN predominately composed of NO3 with 15N values averaging 6.25 ± 0.9 riparian groundwater DIN primarily composed of NH4 + with 15N values averaging 9.17 ± 1.0 and stream water DIN predominately composed of NO3 with 15N values averaging 4.52 ± 0.8 Nitrate samples taken from the stream source and from the stream adjacent to the groundwater transects showed a downstream increase in 15N from 1.0to 4.5 Leaf litter samples averaged 3.5 ± 1.2The observed patterns in isotopic composition, together with previously observed inorganic nitrogen species and concentration shifts between upland, riparian and stream waters, suggest that groundwater DIN is not the primary source of DIN to the stream. Instead, the isotopic data suggest that remineralization of organic nitrogen within the stream itself may be a major source of stream DIN, and that the majority of DIN entering the stream via groundwater flowpaths is removed at the riparian-stream interface.  相似文献   

2.
Water and nitrogen dynamics in an arid woodland   总被引:5,自引:0,他引:5  
Arid environments are characterized by spatial and temporal variation in water and nitrogen availability. differences in 15N and D of four co-occurring species reveal contrasting patterns of plant resource acquisition in response to this variation. Mineralization potential and nitrogen concentration of surface soils associated with plant canopies were greater than inter-canopy locations, and values decreased with increasing depth in both locations. Mineralization potential and nitrogen concentration were both negatively correlated with soil 15N. The spatial variation in soil 15N caused corresponding changes in plant 15N such that plant 15N values were negatively correlated with nitrogen concentration of surface soils. Plants occurring on soils with relatively high nitrogen concentrations had lower 15N, and higher leaf nitrogen concentrations, than plants occurring on soils with relatively low nitrogen concentrations. Two general temporal patterns of water and nitrogen use were apparent. Three species (Juniperus, Pinus andArtemisia) relied on the episodic availability of water and nitrogen at the soil surface. 15N values did not vary through the year, while xylem pressure potentials and stem-water D values fluctuated with changes in soil moisture at the soil surface. In contrast,Chrysothamnus switched to a more stable water and nitrogen source during drought. 15N values ofChrysothamnus increased throughout the year, while xylem pressure potentials and stem-water D values remained constant. The contrasting patterns of resource acquisition have important implications for community stability following disturbance. Disturbance can cause a decrease in nitrogen concentration at the soil surface, and so plants that rely on surface water and nitrogen may be more susceptible than those that switch to more stable water and nitrogen sources at depth during drougnt.  相似文献   

3.
The possibility of using natural abundance techniques to determine N transformations and flows after deposition of cattle dung has been examined. These preliminary results showed that 15N in dung was greater than in plants growing in association with particular pats. This, and other observational information, indicated that dung pats of different ages were being examined. There were significant variations in plant 15N signatures within and between species grown in association and away from the dung. It was probable that variation in plant 15N was brought about by changes in soil mineral N pools after transfer of N derived from the dung. This resulted in different 15N signatures in Trifolium repens (because of changes in N utilization from soil or atmospheric pools), in Lolium perenne (because of changes in 15N in soil mineral N), but not in Ranunculus repens (because the majority of active roots were outside the range of immediate influence of the deposited dung). The differences in 15N allowed the development of hypotheses for changes in soil N pools and the acquisition of N by plants from soil, dung or atmospheric sources.  相似文献   

4.
We examined the effects of fertilizer application, especially the effects of fertigation and types of fertilizer (inorganic and organic) on yields and 15N and 13C values of tomato (Lycopersicon esculentum Mill. cv. Saturn). Fertigation is a method in which an appropriate diluted liquid fertilizer is applied to the plants each time they are drip-irrigated. We developed a method of organic fertigation using corn steep liquor (CSL) as the liquid fertilizer, because it is an industrial byproduct of cornstarch manufacture and can be used very effectively. We compared fruit yield, mineral content, 15N value, and 13C value of tomatoes grown under three different fertilizer treatments, basal dressing: basal dressing with granular chemical fertilizer; inorganic fertigation: fertigation with liquid chemical fertilizer; and organic fertigation: fertigaion with CSL. Mineral contents of tomatoes grown with basal dressing were generally lower than those grown under either fertigation treatment. These results indicated that yields and mineral contents were influenced more by the method of fertilizer application than by whether the fertilizers were inorganic or organic. There were, however, significant differences in the 15N values of tomato fruits grown under different types of fertilizer applications, especially between inorganic and organic fertilizers. The 15N value of the chemical fertilizer used for basal dressing was 0.81 ± 0.45{}, that of the chemical fertilizer for fertigation was 0.00 ± 0.04{}, and that of CSL was 8.50 ± 0.71{}. The 15N values of the soils reflected the 15N values of the fertilizers. Moreover, the 15N values of the fruits corresponded to the 15N values of the applied fertilizers. The 15N values were 3.18 ± 1.34{} in the fruits grown with a basal dressing of chemical fertilizer, 0.30 ± 0.61 in those grown under inorganic fertigation, and 7.09 ± 0.68 in those grown under organic fertigation. On the other hand, although the 13C values in the soil also reflected the 13C values of the applied fertilizers, there was no significant difference in the 13C values of fruits among the different treatments. In conclusion, because the 15N values of fertilizers correlated well with those of the fruits, it may be possible to use 15N values as an indicator of organic products.  相似文献   

5.
The natural abundance of the nitrogen isotope 15, 15N, was analysed in leaves of 23 subarctic vascular plant species and two lichens from a tree-line heath at 450 m altitude and a fellfield at 1150 m altitude close to Abisko in N. Sweden, as well as in soil, rain and snow. The aim was to reveal if plant species with different types of mycorrhizal fungi also differ in their use of the various soil N sources. The dwarf shrubs and the shrubs, which in combination formed more than 65% of the total above-ground biomass at both sites, were colonized by ericoid or ectomycorrhizal fungi. Their leaf 15N was between–8.8 and–5.5 at the heath and between–6.1 and –3.3 at the fellfield. The leaf 15N of non- or arbuscular mycorrhizal species was markedly different, ranging from –4.1 to –0.4 at the heath, and from –3.4 to+2.2 at the fellfield. We conclude that ericoid and ectomycorrhizal dwarf shrubs and shrubs utilize a distinct N source, most likely a fraction of the organic N in fresh litter, and not complexed N in recalcitrant organic matter. The latter is the largest component of soil total N, which had a 15N of –0.7 at the heath and +0.5 at the fellfield. Our field-based data thus support earlier controlled-environment studies and studies on the N uptake of excised roots, which have demonstrated protease activity and amino acid uptake by ericoid and ectomycorrhizal tundra species. The leaves of ectomycorrhizal plants had slightly higher 15N (fellfield) and N concentration than leaves of the ericoids, and Betula nana, Dryas octopetala and Salix spp. also showed NO inf3 sup- reductase activity. These species may depend more on soil inorganic N than the ericoids. The 15N of non- or arbuscular mycorrhizal species indicates that the 15N of inorganic N available to these plants was higher than that of average fresh litter, probably due to high microbial immobilization of inorganic N. The 15N of NH inf4 sup+ -N was +12.3 in winter snow and +1.9 in summer rain. Precipitation N might be a major contributer in species with poorly developed root systems, e.g. Lycopodium selago. Our results show that coexisting plant species under severe nutrient limitation may tap several different N sources: NH inf4 sup+ , NO inf3 sup- and organic N from the soil, atmospheric N2, and N in precipitation. Ericoid and ectomycorrhizal fungi are of major importance for plant N uptake in tundra ecosystems, and mycorrhizal fungi probably exert a major control on plant 15N in organic soils.  相似文献   

6.
Blüthgen N  Gebauer G  Fiedler K 《Oecologia》2003,137(3):426-435
For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (15N and 13C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 in 15N and 6.8 in 13C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in 15N between ants was not correlated with plant 15N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' 15N were consistent with the trophic level predicted by natural feeding observations, but not their 13C. Low 15N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants ( Oecophylla smaragdina) had significantly lower 15N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and diverse tropical omnivore communities.  相似文献   

7.
Cyanobacterial mats (CBM) are important components of wetland ecosystems in limestone-based regions of the Caribbean. During two sampling periods (July 1999 and January 2000) we measured N2-fixation in samples from 23 different marshes simultaneously with measurements of relevant environmental factors. Samples were evaluated for abundance of five groups of cyanobacteria: (1) Leptolyngbya, (2) Oscillatoria, (3) Chroococcales, (4) Nostoc-& Stigonematales, and (5) dead sheaths. Differences in nitrogen fixation, expressed as nitrogenase activity in nmol C2H4 cm–2 h–1, were best explained by the proportion of heterocyst-forming cyanobacteria. The samples were analyzed for the natural abundance of 15N. 15N values ranged from –1.99 to 11.44 and were strongly negatively correlated with N2-fixation. With all data included, 15N was also strongly correlated with nitrates in water. With the samples from Little Belize (high nitrate content marshes) excluded, the effect of nitrate became insignificant. N2-fixation predicted from 15N measured on an independent data set from September 2000 was moderately accurate (r2 = 0.68, 0.52 and 0.54 for predictions based on July 1999, January 2000 and combined data sets, respectively). When individual sample sets were divided into two groups with 15N < 2 and 15N > 2, the two groups were always highly significantly different in terms of their N2-fixation. The presented evidence suggests that 15N can be used as a reliable indicator of N2-fixation by CBM.  相似文献   

8.
Multiple stable isotopes were used to determine the effectiveness of distinguishing among several dominant riparian species and aquatic macrophytes both spatially (three sites) and temporally (three seasons) along an 8-km reach of a blackwater stream. The differences in isotopic composition were used to assess contributions of various organic matter sources to the detrital pool of the stream. Samples of riparian and aquatic macrophyte vegetation and detritus were collected at three times to represent early leaf-out (April), mid-summer (August), and just prior to abscission (October). Each sample was analyzed for stable isotopes of carbon 13C, nitrogen 15N, and sulfur 34S Within a site and sampling date, 13C-values were significantly different among certain riparian species and detritus samples. Species differences persisted between seasons. 34S values were the most variable of the three elements examined although they remained fairly constant through time within each species and site. The results suggest that temporal changes in isotopic compositions of riparian species and aquatic macrophytes are site-specific. Discriminant analysis dissimilarity plots (based on all three isotopes) demonstrated that the contribution of species to the detrital pool depended on the site and season. At the upper site, detritus was isotopically most similar to Quercus laurifolia and Sparganium americanum in April, and the aquatic macrophytes (S. americanum and Potamogeton spp.) in August and October. At the middle site, detritus was most similar to Carpinus caroliniana and Q. nigra in April but no single source was similar to detritus in August or October. At the lower site, detritus was most similar to Taxodium distichum for all three seasons.  相似文献   

9.
Temporal and spatial changes in 13C and 15N of seston (mainly phytoplankton) and isotopic relationship between seston and the lake anchovy (Coilia ectenes) were studied in the large eutrophic freshwater Lake Chaohu in China. Much of the spatial and temporal variation in 13C of lake anchovies was explained by variation in seston, indicating a strong link between pelagic primary production and higher order consumers. Because the lake is shallow, there were no significant differences in 13C and 15N of seston between surface and overlying waters. Spatially, the relatively high 13C and 15N of seston in the western part of the lake might be due to high levels of anthropogenically derived N and C introduced from the surrounding cities through sewage drainage systems. The trophic position of the lake anchovy in the food web of Lake Chaohu was estimated to be 2.9–4.1 (3.5 ± 0.4), which agrees well with the previous stomach content analysis suggesting that the lake anchovy fed both on zooplankton and small planktivorous fishes.  相似文献   

10.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

11.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

12.
Estimates of nitrogen fixation by trees on an aridity gradient in Namibia   总被引:5,自引:0,他引:5  
Summary Nitrogen (N2) fixation was estimated along an aridity gradient in Namibia from the natural abundance of 15N (15N value) in 11 woody species of the Mimosacease which were compared with the 15N values in 11 woody non-Mimosaceae. Averaging all species and habitats the calculated contribution of N2 fixation (N f ) to leaf nitrogen (N) concentration of Mimosaceae averaged about 30%, with large variation between and within species. While in Acacia albida N f was only 2%, it was 49% in Acacia hereroensis and Dichrostachys cinerea, and reached 71% in Acacia melifera. In the majority of species N f was 10–30%. There was a marked variation in background 15N values along the aridity gradient, with the highest 15N values in the lowland savanna. The difference between 15N values of Mimosaceae and non-Mimosaceae, which is assumed to result mainly from N2 fixation, was also largest in the lowland savanna. Variations in 15N of Mimosaceae did not affect N concentrations, but higher 15N-values of Mimosaeae are associated with lower carbon isotope ratios (13C value). N2 fixation was associated with reduced intrinsic water use efficiency. The opposite trends were found in non-Mimosaceae, in which N-concentration increased with 15N, but 13C was unaffected. The large variation among species and sites is discussed.This paper is prepared in memory of J. Visser, who took part in the collection of species, but died in 1990  相似文献   

13.
Tate  Amanda W.  Hershey  Anne E. 《Hydrobiologia》2003,499(1-3):13-23
Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. 13C values of L. racemosa from Florida (mean = –26.4) were slightly higher than those from Twin Cays, Belize (mean = -27.4), which may be due to higher salinity in some parts of the Florida site. There was no difference between the 15N values from L. racemosa from these two sites (Florida mean = 0.6; Belize mean = 0.3), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher 15N values from L. racemosa at Man of War Cay in Belize (11.4 and 12.3), which is fertilized by roosting marine birds (14.0), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. 13C, 15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.  相似文献   

14.
In Ceropegia dichotoma, Crassula argentea, Esheveria colorata, Kalanchoë beharensis, Opuntia ficus-indica, Sansveria stuckyi and Opuntia inermis the carbon-isotope ratio ( 13C) of tissues close to the epidermis is 2–4.3 more negative than those in the centre of the leaf or cladode. The greatest change in 13C value occurs between the epidermal layer and the layer of mesophyll tissue immediately underneath. Analysis of major metabolic and structural components in successive layers of Crassula argentea grown under controlled environmental conditions conducive to Crassulacean acid metabolism confirmed that much of the variation in 13C values of bulk carbon is caused by differences in chemical composition. Thus the steep gradient in 13C value at the epidermis reflects, in part, the contribution of more-negative 13C values of lipids in these tissues. Moreover, during nocturnal CO2 fixation the amount of malic acid synthesised decreases with depth and the 13C value of the methanol-soluble fraction is less negative with distance away from the upper epidermis. These results are consistent with diffusion limitation to CO2 uptake in these thick leaf tissues, which also contributes to the observed gradients in 13C value.Abbreviation CAM Crassulacean acid metabolism - FW fresh weight - PEPCase phospoenolpyruvate carboxylase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - 13C carbon-isotope ratio This work was supported by grants from the North Carolina Biotechnology Centre to Duke University, National Science Foundation (NSF) grant DCB90-06830, Department of Energy, Division of Energy Biosciences grant DE-FG05-89 ER 14005, and NSF grant BSR 87-06429 to Duke University Phytotron.  相似文献   

15.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

16.
Andersson  Per  Torssander  Peter  Ingri  Johan 《Hydrobiologia》1992,(1):205-217
During 1988–89 water samples for sulphur and oxygen isotope measurements were collected in the Lake Mjösjön watershed (7.3 km2), central Sweden. Samples included: precipitation, throughfall, lakewater, shallow groundwater and inlet and outlet streams.The 34S of sulphate in precipitation ranged from + 6.41 in winter to + 3.88 in summer, the higher winter values attributed to seasonal differences in the kinetic and equilibrium isotope fractionation during oxidation of atmospheric sulphur dioxide to sulphate. The 34S in rain samples and in pine and spruce throughfall were similar, indicating no gain of sulphur from the trees. In the inflowing stream, the 34S value increased as discharge decreased, from + 5.57 in spring to + 26.21 in summer, indicating bacterial sulphate reduction. The fluctuations in the inlet water were damped by the lake and in the outlet water, only a small decrease in the 34S value during spring discharge was observed.During winter 1988–89, the near surface waters in the lake showed the same 34S as snow indicating that meltwater governs the isotopic composition. During the winter, the 34S in the near bottom waters increased while oxygen decreased due to bacterial sulphate reduction in the sediments. This also caused an increase in the alkalinity in the near bottom waters.Based on the 18O data the water within the watershed is derived largely from meteoric water. During spring discharge, meltwater governs the inflow and outflow stream while additional groundwater influences occurred during the drier period. Most sulphur is derived from atmospheric deposition and the 34S in sulphate increased during passage through the watershed due to bacterial sulphate reduction.  相似文献   

17.
Dehairs  F.  Rao  R. G.  Chandra Mohan  P.  Raman  A.V.  Marguillier  S.  Hellings  L. 《Hydrobiologia》2000,431(2-3):225-241
Stable carbon isotopic composition and C/N ratio were used to trace the input of carbon associated with mangrove litter into the estuary of the Godavari–Gautami delta system and Kakinada bay (Andhra Pradesh, India). Suspended organic matter in the mangrove channels was more depleted in 13C (average 13C = –24.5) than in Kakinada bay which showed 13C values for suspended matter (average 13C = –22.7) closer to those expected for marine phytoplankton. Suspended organic matter from mangrove channels was enriched in nitrogen (average C/N atom ratio 12.7) and 13C (average 13C = –24.5) relative to mangrove leaf litter, which had a C/N ratio of 75 and a 13C value of –28. Lowest C/N ratios for suspended matter were observed during southwest monsoon when rainfall was highest. Although in general, mangrove litter fall was also lower during this period, no clear correlation was observed between litter fall and C/N ratio of suspended matter. In general, the composition of suspended matter pointed towards phytoplankton as a major component. Isotopic composition of zooplankton suggested selective feeding on 13C-enriched, marine phytoplankton in open Kakinada bay and on 13C-depleted organic matter, such as estuarine phytoplankton and mangrove litter, in the mangrove channels. From the 13C signature, it appeared that mangrove carbon was present to some extent in zooplankton and macrofauna from the mangrove mudflats and channels, but the signal rapidly decreased in Kakinada bay. Nitrogen isotopic composition of zooplankton and macrofauna indicated a progressive enrichment of 15N away from the mangrove forest towards the northern part of Kakinada bay, in approach of Kakinada city. This is thought to reflect input of anthropogenic nitrogen enriched in 15N and subsequent uptake of this enriched nitrogen into the aquatic food chain.  相似文献   

18.
The diets and trophic interactions among Weddell, crabeater, Ross, and leopard seals in the eastern Ross Sea, Antarctica, were investigated by the use of stable isotope techniques during the 1999–2000 summer seasons. The 13C and 15N values in seal serum clearly distinguished the three Antarctic pack-ice seal species at different trophic positions (Weddell>Ross>crabeater). These patterns appeared to reflect a close linkage to their known foraging ecology and diving behaviors, and agreed well with their presumed dietary diversity. The more enriched 13C and 15N values in male Weddell seals than those in females suggested differences in foraging preferences between them. Significant differences in 15N were also found among different age groups of Weddell seals. A strong correlation between the C:N ratios and serum cholesterol was probably due to extremely high cholesterol levels in phocids. Comparisons of isotope data with harbor seals revealed distinct differences between Antarctic phocids and the northern seal species.  相似文献   

19.
Schmidt  Olaf  Scrimgeour  Charles M. 《Plant and Soil》2001,229(2):197-202
The use of 13C isotope tracer techniques in terrestrial ecology has been restricted by the technical requirements and high costs associated with the production of 13C enriched plant material by 13CO2 release in labelling chambers. We describe a novel, simple and relatively inexpensive method for the small-scale production of 13C and 15N labelled plant material. The method is based on foliar feeding of plants with a urea solution (97 atom% 13C, 2 atom% 15N) by daily misting. Maize was grown in a greenhouse in a compost–soil mixture and enclosed in clear polythene bags between urea applications. Final enrichment in 27 d old maize shoots was 211 13C (1.34 atom% 13C) and 434 15N (0.52 atom% 15N). Enrichments of hot-water extractable fractions (289 13C, 469 15N) were only slightly higher than those observed in plant bulk material, which suggests that daily urea applications ensured fairly uniform labelling of different biochemical fractions and plant tissues. Recovery of applied excess 13C and 15N in plant shoots was 22% and 42%, respectively. Roots were less enriched (21 13C and 277 15N), but no attempts were made to recover roots quantitatively.  相似文献   

20.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号