首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

2.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

3.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   

4.
Receptor-mediated inhibition of amiloride-sensitive sodium absorption was observed in primary and immortalized murine renal collecting duct cell (mCT12) monolayers. The addition of epidermal growth factor (EGF) to the basolateral bathing solution of polarized monolayers reduced amiloride-sensitive short-circuit current (Isc) by 15–25%, whereas the addition of ATP to the apical bathing solution decreased Isc by 40–60%. Direct activation of PKC with phorbol 12-myristate 13-acetate (PMA) and mobilization of intracellular calcium with 2,5-di-tert-butyl-hydroquinone (DBHQ) reduced amiloride-sensitive Isc in mCT12 monolayers by 46 ± 4% (n = 8) and 22 ± 2% (n = 8), respectively. Exposure of mCT12 cells to EGF, ATP, PMA, and DBHQ caused an increase in phosphorylation of p42/p44 (extracellular signal-regulated kinase; ERK1/2). Pretreatment of mCT12 monolayers with an ERK kinase inhibitor (PD-98059; 30 µM) prevented phosphorylation of p42/p44 and significantly reduced EGF, ATP, and PMA-induced inhibition of amiloride-sensitive Isc. In contrast, pretreatment of monolayers with a PKC inhibitor (bisindolylmaleimide I; GF109203x; 1 µM) almost completely blocked the PMA-induced decrease in Isc, but did not alter the EGF- or ATP-induced inhibition of Isc. The DBHQ-mediated decrease in Isc was due to inhibition of basolateral Na+-K+-ATPase, but EGF-, ATP-, and PMA-induced inhibition was most likely due to reduced apical sodium entry (epithelial Na+ channel activity). The results of these studies demonstrate that acute inhibition of amiloride-sensitive sodium transport by extracelluar ATP and EGF involves ERK1/2 activation and suggests a role for MAP kinase signaling as a negative regulator of electrogenic sodium absorption in epithelia. mitogen-activated protein kinase; epithelial ion transport; epithelial sodium channel  相似文献   

5.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

6.
Polyspecific organic cation transporters (OCTs) have a large substrate binding pocket with different interaction domains. To determine whether OCT regulation is substrate specific, suitable fluorescent organic cations were selected by comparing their uptake in wild-type (WT) human embryonic kidney (HEK)-293 cells and in HEK-293 cells stably transfected with hOCT2. N-amidino-3,5-diamino-6-chloropyrazine-carboxamide (amiloride) and 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP) showed concentration-dependent uptake in hOCT2 at 37°C. After subtraction of unspecific uptake determined in WT at 37°C or in hOCT2 at 8°C saturable specific uptake of both substrates was measured. Km values of hOCT2-mediated uptake of 95 µM amiloride and 24 µM ASP were calculated. Inhibition of amiloride and ASP uptake by several organic cations was also measured [IC50 (in µM) for amiloride and ASP, respectively, tetraethylammonium (TEA) 98 and 30, cimetidine 14 and 26, and tetrapentylammonium (TPA) 7 and 2]. Amiloride and ASP uptake were significantly reduced by inhibition of Ca2+/CaM complex (–55 ± 5%, n = 10 and –63 ± 2%, n = 15, for amiloride and ASP, respectively) and stimulation of PKC (–54 ± 5%, n = 14, and –31 ± 6%, n = 26) and PKA (–16 ± 5%, n = 16, and –18 ± 4%, n = 40), and they were increased by inhibition of phosphatidylinositol 3-kinase (+28 ± 6%, n = 8, and +55 ± 17%, n = 16). Inhibition of Ca2+/CaM complex resulted in a significant decrease of Vmax (160–99 photons/s) that can be explained in part by a reduction of the membrane-associated hOCT2 (–22 ± 6%, n = 9) as determined using FACScan flow cytometry. The data indicate that saturable transport by hOCT2 can be measured by the fluorescent substrates amiloride and ASP and that transport activity for both substrates is regulated similarly. Inhibition of the Ca2+/CaM complex causes changes in transport capacity via hOCT2 trafficking. organic cation transport; fluorescence measurement; 4-[4-(dimethylamino)-styryl]-n-methylpyridinium; amiloride  相似文献   

7.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

8.
Patients treated with glucocorticoids have elevated skeletal muscle ouabain binding sites. The major Na+-K+-ATPase (NKA) isoform proteins found in muscle, 2 and 1, are increased by 50% in rats treated for 14 days with the synthetic glucocorticoid dexamethasone (DEX). This study addressed whether the DEX-induced increase in the muscle NKA pool leads to increased insulin-stimulated cellular K+ uptake that could precipitate hypokalemia. Rats were treated with DEX or vehicle via osmotic minipumps at one of two doses: 0.02 mg·kg–1·day–1 for 14 days (low DEX; n = 5 pairs) or 0.1 mg·kg–1·day–1 for 7 days (high DEX; n = 6 pairs). Insulin was infused at a rate of 5 mU·kg–1·min–1 over 2.5 h in conscious rats. Insulin-stimulated cellular K+ and glucose uptake rates were assessed in vivo by measuring the exogenous K+ infusion () and glucose infusion (Ginf) rates needed to maintain constant plasma K+ and glucose concentrations during insulin infusion. DEX at both doses decreased insulin-stimulated glucose uptake as previously reported. Ginf (in mmol·kg–1·h–1) was 10.2 ± 0.6 in vehicle-treated rats, 5.8 ± 0.8 in low-DEX-treated rats, and 5.2 ± 0.6 in high-DEX-treated rats. High DEX treatment also reduced insulin-stimulated K+ uptake. (in mmol·kg–1·h–1) was 0.53 ± 0.08 in vehicle-treated rats, 0.49 ± 0.14 in low-DEX-treated rats, and 0.27 ± 0.08 in high-DEX-treated rats. DEX treatment did not alter urinary K+ excretion. NKA 2-isoform levels in the low-DEX-treated group, measured by immunoblotting, were unchanged, but they increased by 38 ± 15% (soleus) and by 67 ± 3% (gastrocnemius) in the high-DEX treatment group. The NKA 1-isoform level was unchanged. These results provide novel evidence for the insulin resistance of K+ clearance during chronic DEX treatment. Insulin-stimulated cellular K+ uptake was significantly depressed despite increased muscle sodium pump pool size. skeletal muscle; sodium pump; Na+-K+-ATPase  相似文献   

9.
We have used the recombinantNH2-terminalmyc-tagged rabbitNa+-glucose transporter (SGLT1) tostudy the regulation of this carrier expressed in COS-7 cells.Treatment of cells with a protein kinase C (PKC) agonist, phorbol12-myristate 13-acetate (PMA), caused a significant decrease (38.03 ± 0.05%) in methyl-D-glucopyranoside transportactivity that could not be emulated by 4-phorbol 12,13-didecanoate. The decrease in sugar uptake stimulated by PMA was reversed by the PKCinhibitor bisindolylmaleimide I. The maximal rate ofNa+-glucose cotransport activity(Vmax) wasdecreased from 1.29 ± 0.09 to 0.85 ± 0.04 nmol · min1 · mgprotein1 after PMAexposure. However, measurement of high-affinityNa+-dependent phloridzin bindingrevealed that there was no difference in the number of cell surfacetransporters after PMA treatment; maximal binding capacities were 1.54 ± 0.34 and 1.64 ± 0.21 pmol/mg protein for untreated andtreated cells, respectively. The apparent sugar binding affinity(Michaelis-Menten constant) and phloridzin binding affinity(dissociation constant) were not affected by PMA. Because PKC reducedVmax withoutaffecting the number of cell surface SGLT1 transporters, we concludethat PKC has a direct effect on the carrier, resulting in a lowering ofthe transporter turnover rate by a factor of two.  相似文献   

10.
Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1–/–; Shi TS et al. J Clin Invest 103: 331, 1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1–/– mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1–/– erythrocytes was markedly activated by exposure to hypertonic conditions (18.2 ± 3.2 in 4.1–/– vs. 9.8 ± 1.3 mmol/1013 cell x h in control mice), with an abnormal dependence on osmolality (EC50 = 417 ± 42 in 4.1–/– vs. 460 ± 35 mosmol/kgH2O in control mice), suggestive of an upregulated functional state. While the affinity for internal protons was not altered (K0.5 = 489.7 ± 0.7 vs. 537.0 ± 0.56 nM in control mice), the Vmax of the H-induced Na/H exchange activity was markedly elevated in 4.1–/– erythrocytes (Vmax 91.47 ± 7.2 compared with 46.52 ± 5.4 mmol/1013 cell x h in control mice). Na/H exchange activation by okadaic acid was absent in 4.1–/– erythrocytes. Altogether, these results suggest that erythroid protein 4.1 plays a major role in volume regulation and physiologically downregulates Na/H exchange in mouse erythrocytes. Upregulation of the Na/H exchange is an important contributor to the elevated cell Na content of 4.1–/– erythrocytes. spherocytosis; cell Na; Na/H exchange  相似文献   

11.
Using NaH14CO3 (0·01-0·03 mol m–3) fed to5·0 mm of Nitella flexilis in artificial pond water at22–25°C, we have found that uptake in 5 min or in1 h varies with the streaming rate of the fed cell and is reducedby anoxia over the uptake position. We have also found thatthe %14C transported across the node between two internodalcells in tandem is highly sensitive to the streaming rate ineach cell, to the physiological state of the cells (summer versuswinter), to the method of feeding (5 min versus 1 h) and tocovering the node, particularly with winter cells or summercells preconditioned for 3 h in the dark and run in the dark.Transnodal transport by plasmodesmata is sensitive to anoxiaand seems to be at least partly active. Key words: Node, plasmodesmata, anoxia, active transport, influx  相似文献   

12.
Resting membrane potential (RMP) and whole cell currents wererecorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs),lipopolysaccharide (LPS)-treated HUVECs, immobilizedE-selectin, or vascular cell adhesion molecule 1 (VCAM-1)using the patch-clamp technique. RMP after 5 h on polystyrene was24.3 ± 1.7 mV (n = 42) with delayed rectifier K+(Idr) andCl currents(ICl) presentin >75% of the cells. Inwardly rectifying K+ currents(Iir) werepresent in only 14% of THP-1 cells. Adherence to unstimulated HUVECsor E-selectin for 5 h had no effect on Iir orICl but decreasedIdr. Five hoursafter adherence to LPS-treated HUVECs, outward currents were unchanged,but Iir waspresent in 81% of THP-1 cells. A twofold increase inIir and ahyperpolarization (41.3 ± 3.7 mV,n = 16) were abolished by pretreatmentof THP-1 cells with cycloheximide, a protein synthesis inhibitor, orherbimycin A, a tyrosine kinase inhibitor, or by pretreatment of theLPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interactionbetween THP-1 cells and LPS-treated HUVECs was required toinduce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similarconductances to cells adherent to LPS-treated HUVECs. Thus engagementof specific integrins results in selective modulation of differentK+ conductances.

  相似文献   

13.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

14.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

15.
The acidophilic alga Dunaliella acidophila exhibits optimalgrowth at pH 1. We have investigated the regulation of phosphateuptake by this alga using tracer techniques and by performingintracellular phosphate measurements under different growthconditions including phosphate limitation. In batch culturewith 2·2 mol m–3 phosphate in the medium the uptakeof phosphate at micromolar phosphate concentrations followeda linear time dependence in the range of minutes and rates werein the range of 1 µmol phosphate mg–1 chl h–1,only. However, under discontinuous phosphate-limited growthconditions, tracer influx revealed a biphasic pattern at micromolarphosphate concentrations: An initial burst phase resulted ina 104-fold internal phosphate accumulation and levelled offafter about 10 s. A double reciprocal plot of the initial influxrates obtained for phosphate-limited and unlimited algae exhibitedMichaelis-Menten kinetics. Phosphate limitation caused a significantactivation of the maximum velocity of uptake, yielding Vmaxup to 1 mmol mg–1 chl h–1 as compared to valuesin the order of 50 µmol phosphate mg–1 chl h–1for the second phase (this magnitude is also representativefor non-limited batch cultures). Concomitantly the Michaelisconstant was altered from 4 mmol m–3 to 0·7 mmolm–3. The rapid uptake of phosphate was inhibited by arsenateand FCCP and was not stimulated by Na+. The pH dependence oftracer accumulation and measurements of the intracellular phosphatepool under different growth conditions indicate that at lowpH and low external phosphate concentrations the high protongradient present under these conditions is utilized for a H3PO4uptake or a H+/H2PO4 cotransport. However, when the externalphosphate concentration was increased to levels sufficientlyhigh for transport to be driven by the positive membrane potential(10 mol m–3 phosphate), the pH dependence of phosphateuptake was more complex, but could be explained by the uptakeof H3PO4 or a H+/H2PO4-cotransport at low pH and a differenttype H2PO4-transport (with unknown type of ion coupling)at high pH-values. It is suggested that this flexible couplingof phosphate transport is of essential importance for the acidresistance of Dunaliella acidophila. Key words: Acid resistance, Dunaliella acidophila, phosphate cotransport, phosphate limitation, plasma membrane, sodium  相似文献   

16.
The present studyexamined the intestinal uptake of thiamine (vitaminB1) using the human-derivedintestinal epithelial cells Caco-2 as an in vitro model system.Thiamine uptake was found to be 1)temperature and energy dependent and occurred with minimal metabolicalteration; 2) pH sensitive;3)Na+ independent;4) saturable as a function ofconcentration with an apparent Michaelis-Menten constant of 3.18 ± 0.56 µM and maximal velocity of 13.37 ± 0.94 pmol · mgprotein1 · 3 min1;5) inhibited by the thiaminestructural analogs amprolium and oxythiamine, but not by unrelatedorganic cations tetraethylammonium, N-methylnicotinamide, and choline; and6) inhibited in a competitive mannerby amiloride with an inhibition constant of 0.2 mM. The role ofspecific protein kinase-mediated pathways in the regulation of thiamineuptake by Caco-2 cells was also examined using specific modulators ofthese pathways. The results showed possible involvement of aCa2+/calmodulin (CaM)-mediatedpathway in the regulation of thiamine uptake. No role for proteinkinase C- and protein tyrosine kinase-mediated pathways in theregulation of thiamine uptake was evident. These results demonstratethe involvement of a carrier-mediated system for thiamine uptake byCaco-2 intestinal epithelial cells. This system isNa+ independent and is differentfrom the transport systems of organic cations. Furthermore, aCaM-mediated pathway appears to play a role in regulating thiamineuptake in these cells.

  相似文献   

17.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

18.
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (O2 peak) = 43.6 ± 2.6 (SE) ml·kg–1·min–1] during prolonged cycle exercise to fatigue performed at 58% O2 peak after 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower (P < 0.05) resting maximal Ca2+-ATPase activity (Vmax = 174 ± 12 vs. 153 ± 10 µmol·g protein–1·min–1) and smaller reduction in Vmax induced during exercise. A similar effect was observed for Ca2+ uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+ concentration and Ca2+-ATPase activity, was higher (P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+ uptake to Vmax, was 23–30% elevated (P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The 27 and 34% reductions (P < 0.05) in phase 1 and phase 2 Ca2+ release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+ sequestration properties and efficiency are improved compared with those during Lo CHO alone. calcium cycling; vastus lateralis; contractile activity; glycogen; phosphorylation potential  相似文献   

19.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

20.
To evaluate the effects of contractions on thekinetics of uptake and oxidation of palmitate in a physiological musclepreparation, rat hindquarters were perfused with glucose (6 mmol/l),albumin-bound [1-14C]palmitate, andvarying amounts of albumin-bound palmitate (200-2,200 µmol/l) atrest and during muscle contractions. When plotted against the unboundpalmitate concentration, palmitate uptake and oxidation displayedsimple Michaelis-Menten kinetics with estimated maximal velocity(Vmax)and Michaelis-Menten constant(Km) values of42.8 ± 3.8 (SE)nmol · min1 · g1and 13.4 ± 3.4 nmol/l for palmitate uptake and 3.8 ± 0.4 nmol · min1 · g1and 8.1 ± 2.9 nmol/l for palmitate oxidation, respectively, at rest.Whereas muscle contractions increased theVmaxfor both palmitate uptake and oxidation to 91.6 ± 10.1 and 16.5 ± 2.3 nmol · min1 · g1,respectively, theKm remainedunchanged.Vmaxand Km estimates obtained from Hanes-Woolf plots (substrate concentration/velocity vs.substrate concentration) were not significantly different. In theresting perfused hindquarter, an increase in palmitate delivery from31.9 ± 0.9 to 48.7 ± 1.2 µmol · g1 · h1by increasing perfusate flow was associated with a decrease in thefractional uptake of palmitate so that the rates of uptake andoxidation of palmitate remained unchanged. It is concluded that therates of uptake and oxidation of long-chain fatty acids (LCFA) saturatewith an increase in the concentration of unbound LCFA in perfusedskeletal muscle and that muscle contractions, but not an increase inplasma flow, increase theVmaxfor LCFA uptake and oxidation. The data are consistent with the notion that uptake of LCFA in muscle may be mediated in part by a transport system.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号