首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin (C) and its natural analogues demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC), known for their potent anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic effects, were tested for their possible inhibitory effects against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor induced rat liver S9 homogenate. In the present investigations, curcumin as well as its two natural analogues i.e., dmC and bdmC were found to be highly effective in suppressing genotoxicity of all the tested cooked food mutagens in a dose-dependent manner, in both the frame shift (TA98) as well as base pair mutation sensitive (TA100) strains of S. typhimurium. However, bdmC appeared to be a relatively less active antimutagen compared to C and dmC. More than 80% inhibition of mutagenicity was observed at 200 microg/plate in case of C and dmC in both TA98 and TA100 against all tested cooked food mutagens. Where as, bdmC showed 39-79% inhibition in TA100 and 60-80% inhibition in TA98, at a dose of 200 microg/plate. These findings warrant further biochemical, enzymatic and in vivo investigations in animal models as well as in humans to establish the chemoprotective effect of these agents against mutagenic heterocyclic amines found in cooked food.  相似文献   

2.
For a compound to be a radical-trapping antioxidant, the antioxidant-derived radical must be sufficiently inert to molecular oxygen as this would generate harmful chain-propagating peroxyl radicals. Curcumin has a unique structure with phenolic hydroxyl group as well as β-diketone moiety in the same molecule, both of which are able to donate electrons to free radicals. However, due to the reactivity toward molecular oxygen, the carbon-centered radical derived from β-diketone moiety do not serve as radical-trapping antioxidants. In this study, we reasoned that stabilization of the carbon-centered radical through substitution with an electron-withdrawing group would enhance the radical-scavenging antioxidative activity of the resulting curcuminoids. Thus, various substituents (methyl, allyl, methoxy, xanthate, and acetoxy) covering broad spectrum of the polar substituent effect were introduced to the central methylene position of both phenolic and non-phenolic curcuminoids. With the free phenolic hydroxyl groups present, the methylene-substituent did not exert significant effect on the antioxidant activity of the curcuminoids (EC(50)=23.2-30.3 μM) with the exception of the acetoxy-substituted derivative (EC(50)=8.7 μM) which showed more potent activity than curcumin (EC(50)=22.6 μM). When substituted to the non-phenolic curcumin scaffold, however, the methylene-substituent enhanced antioxidant activity of the otherwise inactive curcuminoids in the increasing order of methyl相似文献   

3.
Bilirubin, which is derived from its metabolic precursor biliverdin, is the end product of heme catabolism. It has been proposed as a physiological antioxidant present in human extracellular fluids. We have earlier shown that bilirubin in the presence of the transition metal ion Cu(II) causes strand cleavage in DNA through generation of reactive oxygen species, particularly the hydroxyl radical. Thus bilirubin possesses both antioxidant and prooxidant properties. In order to understand the chemical basis of various biological properties of bilirubin, we have studied the structure-activity relationship between bilirubin and its precursor biliverdin. The latter has also been reported to possess both antioxidant and toxic properties. In the present studies bilirubin was found to be more effective in the DNA cleavage reaction and a more efficient reducer of Cu(II). The rate of formation of hydrogen peroxide and hydroxyl radicals by the compounds also showed a similar pattern. The relative antioxidant activity was also examined by studying the effect of these compounds on DNA cleavage by a hydroxyl radical generating system and their quenching effect on hydroxyl radicals. The results indicate that bilirubin is more active both as an antioxidant as well as an oxidative DNA cleaving agent. A model for binding of copper to bilirubin has been proposed where two copper ions are bound to two molecules of bilirubin through their terminal pyrrole nitrogens. In order to account for the enhanced copper reducing capacity of bilirubin we have further proposed that an additional copper binding site is provided for in the case of bilirubin due to the absence of a double bond between pyrrole rings II and III. Further it would appear that the structural features of the bilirubin molecule which are important for its prooxidant action are also the ones that render it a more effective antioxidant.  相似文献   

4.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

5.
Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H2O2, HO, ROO. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.  相似文献   

6.
Tannic acid has numerous food and pharmacological applications. It is an additive in medicinal products, and is used as a flavouring agent and as an anti-oxidant in various foods and beverages. We have previously shown that tannic acid in the presence of Cu(II) causes DNA degradation through generation of reactive oxygen species. On the other hand, it exhibits antimutagenic and anticarcinogenic activities, and induces apoptosis in animal cells. It is known that most plant-derived polyphenolic anti-oxidants also act as pro-oxidants under certain conditions. In this paper, we compare the anti-oxidant and pro-oxidant properties of tannic acid and its structural component gallic acid. It is shown that tannic acid is the most efficient generator of the hydroxyl radical in the presence of Cu(II), as compared with gallic acid and its analogues syringic acid and pyrogallol. The anti-oxidant activity of tannic acid was studied by its effect on hydroxyl radical and singlet oxygen mediated cleavage of plasmid DNA. Again, tannic acid provided the maximum protection against cleavage, while gallic acid and its structural analogues were found to be non-inhibitory or partially inhibitory. The results suggest that the structural features of tannic acid that are important for its anti-oxidant action are also those that contribute to the generation of hydroxyl radicals in the presence of Cu(II). Restriction analysis of treated phage DNA and thermal melting profiles of calf thymus DNA indicated that tannic acid strongly binds to DNA. Indirect evidence indicates that modification of DNA bases may also occur.  相似文献   

7.
8.
The natural product jadomycin B, isolated from Streptomyces venezeulae ISP5230, has been found to cleave DNA in the presence of Cu(II) ions without the requirement for an external reducing agent. The efficiency of DNA cleavage was probed using supercoiled plasmid DNA in buffered solution as a model environment. EC?? and t(?) values for cleavage were 1.7 μM and 0.75 h, respectively, and varied ± 5% with the particular batch of plasmid and jadomycin employed. While UV-vis spectroscopy indicates that the cleavage event does not involve direct binding of jadomycin B to DNA, a stoichiometric Cu(II) preference for optimum cleavage suggests a weak binding interaction between jadomycin B and Cu(II) in the presence of DNA. The Cu(II)-mediated cleavage is greatly enhanced by UV light, which implicates the jadomycin B radical cation and Cu(I) as potential intermediates in DNA cleavage. Evidence in favor of this hypothesis was derived from a mechanistic assay which showed reduced cleavage as a function of added catalase and EDTA, scavengers of H?O? and Cu(II), respectively. Thus, jadomycin B may serve as a source of electrons for Cu(II) reduction, producing Cu(I) which reacts with H?O? to form hydroxyl radicals that cause DNA strand scission. In addition, scavengers of hydroxyl radicals and superoxide also display inhibitory effects, underscoring the ability of jadomycin B to produce a powerful arsenal of deleterious oxygen species when copper is present.  相似文献   

9.
The mechanism of DNA damage by hydrazine in the presence of metal ions was investigated by DNA sequencing technique and ESR-spin trapping method. Hydrazine caused DNA damage in the presence of Mn(III), Mn(II), Cu(II), Co(II), and Fe(III). The order of inducing effect on hydrazine-dependent DNA damage (Mn(III) greater than Mn(II) approximately Cu(II) much greater than Co(II) approximately Fe(III)) was related to that of the accelerating effect on the O2 consumption rate of hydrazine autoxidation. DNA damage by hydrazine plus Mn(II) or Mn(III) was inhibited by hydroxyl radical scavengers and superoxide dismutase, but not by catalase. On the other hand, bathocuproine and catalase completely inhibited DNA damage by hydrazine plus Cu(II), whereas hydroxyl radical scavengers and superoxide dismutase did not. Hydrazine plus Mn(II) or Mn(III) caused cleavage at every nucleotide with a little weaker cleavage at adenine residues, whereas hydrazine plus Cu(II) induced piperidine-labile sites frequently at thymine residues, especially of the GTC sequence. ESR-spin trapping experiments showed that hydroxyl radical is generated during the Mn(III)-catalyzed autoxidation of hydrazine, whereas hydrogen atom adducts of spin trapping reagents are generated during Cu(II)-catalyzed autoxidation. The results suggest that hydrazine plus Mn(II) or Mn(III) generate hydroxyl free radical not via H2O2 and that this hydroxyl free radical causes DNA damage. A possibility that the hydrogen atom releasing compound participates in hydrazine plus Cu(II)-induced DNA damage is discussed.  相似文献   

10.
Dimethoxycurcumin (Dimc), a metabolically stable analogue of curcumin, is under investigation as an anti-tumour agent. Recently a number of studies have been performed on Dimc in this laboratory and also by others. In the present article, all these results have been summarized and wherever possible compared with those of curcumin. Rate constant for reactions of Dimc with superoxide radicals was comparable with that of curcumin, while its reaction with peroxyl radicals was much slower. These results were further supported by the observations on the scavenging of basal ROS levels in lymphocytes and evaluation of antioxidant activities. In line with the earlier reports on curcumin, Dimc was a pro-oxidant and generated ROS in tumour cells. Both curcumin and Dimc were non-toxic to lymphocytes, while exhibiting comparable cytotoxicity to tumour cells. Additionally, these compounds showed higher uptake in tumour cells than in normal lymphocytes. Fluorescence studies on both the compounds revealed their binding to genomic DNA, similar sub-cellular distribution and nuclear localization. All these studies suggested that methylation of the phenolic-OH group in curcumin, although decreasing the antioxidant activity marginally, showed comparable pro-oxidant activity, making it a promising anti-tumour agent.  相似文献   

11.
The phytochemical curcumin may improve translocation of the cystic fibrosis transmembrane regulatory (CFTR) protein in lung epithelium and therefore be helpful in the treatment of cystic fibrosis (CF) symptoms. However, previous studies often use commercial curcumin that is a combination of curcumin, demethoxycurcumin and bisdemethoxycurcumin which could affect the investigated cells differently. In the present study, we investigated the potential difference between curcumin, bisdemethoxycurcumin and dimethoxycurcumin on the epithelial tight junction complex, in the bronchial epithelial cell line VA10, by measuring transepithelial electrical resistance (TER), immunofluorescence and western blotting of tight junction proteins. The curcuminoids were complexed with hydroxypropyl-γ–cyclodextrin for increased solubility and stability. Curcumin (10 µg/ml) increased the TER significantly after 24 h of treatment while four times higher concentration of bisdemethoxycurcumin was required to obtain similar increase in TER as curcumin. Interestingly, dimethoxycurcumin did not increase TER. Curcumin clearly affected the F-actin structures both apically and basolaterally. These results begin to define possible effects of curcuminoids on healthy bronchial epithelia and shows that difference in the phenyl moiety structure of the curcuminoids influences the paracellular epithelial integrity.  相似文献   

12.
《Free radical research》2013,47(8):959-965
Abstract

Dimethoxycurcumin (Dimc), a metabolically stable analogue of curcumin, is under investigation as an anti-tumour agent. Recently a number of studies have been performed on Dimc in this laboratory and also by others. In the present article, all these results have been summarized and wherever possible compared with those of curcumin. Rate constant for reactions of Dimc with superoxide radicals was comparable with that of curcumin, while its reaction with peroxyl radicals was much slower. These results were further supported by the observations on the scavenging of basal ROS levels in lymphocytes and evaluation of antioxidant activities. In line with the earlier reports on curcumin, Dimc was a pro-oxidant and generated ROS in tumour cells. Both curcumin and Dimc were non-toxic to lymphocytes, while exhibiting comparable cytotoxicity to tumour cells. Additionally, these compounds showed higher uptake in tumour cells than in normal lymphocytes. Fluorescence studies on both the compounds revealed their binding to genomic DNA, similar sub-cellular distribution and nuclear localization. All these studies suggested that methylation of the phenolic-OH group in curcumin, although decreasing the antioxidant activity marginally, showed comparable pro-oxidant activity, making it a promising anti-tumour agent.  相似文献   

13.
There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest a possible contributory role of oxidatively generated DNA damage by dopamine and related catechol neurotransmitters/neurotoxins in neurodegeneration and cell death. We also found that a naturally occurring broad-spectrum antioxidant, ellagic acid, was substantially effective (nearly 50% inhibition) at low doses (1μM) at preventing this dopamine/Cu(II)-mediated oxidatively generated DNA damage. Because dietary ellagic acid has been found to reduce oxidative stress in rat brains, a neuroprotective role of this polyphenol is plausible.  相似文献   

14.
Mechanisms of DNA damage by metabolites of carcinogenic o-toluidine in the presence of metals were investigated by the DNA sequencing technique using (32)P-labeled human DNA fragments. 4-Amino-3-methylphenol, a major metabolite, caused DNA damage in the presence of Cu(II). Predominant cleavage sites were thymine and cytosine residues. o-Nitrosotoluene, a minor metabolite, did not induce DNA damage even in the presence of Cu(II), but addition of NADH induced DNA damage very efficiently. The DNA cleavage pattern was similar to that in the case of 4-amino-3-methylphenol. Bathocuproine and catalase inhibited DNA damage by these o-toluidine metabolites, indicating the participation of Cu(I) and H(2)O(2) in the DNA damage. Typical free hydroxyl radical scavengers showed no inhibitory effects on the DNA damage. o-Toluidine metabolites increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). UV-visible and ESR spectroscopic studies have demonstrated that 4-amino-3-methylphenol is autoxidized to form the aminomethylphenoxyl radical and o-nitrosotoluene is reduced by NADH to the o-toluolhydronitroxide radical in the presence and absence of Cu(II). Consequently, it is considered that these radicals react with O(2) to form O(-)(2) and subsequently H(2)O(2), and that the reactive species generated by the reaction of H(2)O(2) with Cu(I) participate in the DNA damage. Metal-mediated DNA damage by o-toluidine metabolites through H(2)O(2) seems to be relevant for the expression of the carcinogenicity of o-toluidine.  相似文献   

15.
Although curcumin is known to exhibit antitumor activity, carcinogenic properties have also been reported. To clarify the potentiality of carcinogenesis by curcumin, we have examined whether curcumin can induce DNA damage in the presence of cytochrome P450 (CYP) using [32P]-5(')-end-labeled DNA fragments obtained from genes relevant to human cancer. Curcumin treated with CYP 2D6, CYP1A1, or CYP1A2 induced DNA damage in the presence of Cu(II). CYP2D6-treated curcumin caused base damage, especially at 5(')-TG-3('), 5(')-GC-3('), and GG sequences. The DNA damage was inhibited by both catalase and bathocuproine, suggesting that reactive species derived from the reaction of H(2)O(2) with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2(')-deoxyguanosine was significantly increased by CYP2D6-treated curcumin in the presence of Cu(II). Time-of- flight mass spectrometry demonstrated that CYP2D6 catalyzed the conversion of curcumin to O-demethyl curcumin. Therefore, it is concluded that curcumin may exhibit carcinogenic potential through oxidative DNA damage by its metabolite.  相似文献   

16.
Curcumin, a natural polyphenol in the spice turmeric, has been found to exhibit anticancer activity. Although curcumin is generally considered an antioxidant, it is also able to elicit apoptosis through the generation of ROS, thereby functioning as a pro-oxidant in cancer cells. The present study investigated the effects of antioxidant pretreatment on curcumin-induced cytotoxicity in the human cancer cell lines A2780, MCF-7, and MDA-MB-231. Cytotoxicity was enhanced by trolox, vitamin C or vitamin E; trolox, a water soluble vitamin E derivative, was the most potent. The combination of curcumin (10 μM) and trolox (10-50 μM) induced apoptosis of cancer cells as evidenced by PARP cleavage and caspase-3 activation. Furthermore, expression of the pro-apoptotic protein Bad was up-regulated and expression of the anti-apoptotic proteins Bcl-2 and Bcl-xl was down-regulated in cells that had been treated with trolox plus curcumin. ROS generation was detected in curcumin-treated cells and was significantly enhanced when cells were treated with trolox plus curcumin. Exogenous catalase or SOD1 did not alter cytotoxicity, while over-expression of either catalase or SOD1 did, pointing to the importance of intracellular hydrogen peroxide generation in cell killing. In conclusion, we demonstrated for the first time that antioxidants such as trolox can potentiate cancer cell killing by curcumin, a finding which may help in the development of novel drug combination therapies.  相似文献   

17.
WW Quitschke 《PloS one》2012,7(6):e39568
Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4-6 days to either preparation in cell culture media reduced cell division (1-5 μM), induced senescence (6-7 μM) or comprehensive cell death (8-10 μM) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 μM) for 0.5-4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6-10 μM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are sequentially activated and that this activation is dependent on the affinity of curcuminoids for the respective binding sites. Defined serum-solubilized curcuminoids used in cell culture media are thus suitable for further investigating the differential activation of signal transduction pathways.  相似文献   

18.
Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Elevated MG levels in diabetes patients are believed to contribute to diabetic complications. MG is cytotoxic through induction of apoptosis. Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties. In the present study, we examined the effect of curcumin on apoptotic biochemical events caused by incubation of ESC-B5 cells with MG. Curcumin inhibited the MG-induced DNA fragmentation, caspase-3 activation, cleavage of PARP, mitochondrial cytochrome c release, and JNK activation. Importantly, curcumin also inhibited the MG-stimulated increase of reactive oxygen species (ROS) in these cells. In addition, we demonstrated that curcumin prevented the MG-induced apoptosis of mouse blastocysts isolated from pregnant mice. Moreover, curcumin significantly reduced the MG-mediated impairment of blastocyst development from mouse morulas. The results support the hypothesis that curcumin inhibits MG-induced apoptosis in mouse ESC-B5 cells and blastocysts by blocking ROS formation and subsequent apoptotic biochemical events.  相似文献   

19.
Novel homodinuclear Cu(II) (K1), heterodinuclear Cu(II)-Mn(II) (K2) and homotrinuclear Cu(II) (K3) complexes with a novel oxime-type ligand have been prepared and their nucleolytic activities on pCYTEXP were established by neutral agarose gel electrophoresis. The analyses of the cleavage products obtained electrophoretically indicate that although the examined complexes induces very similar conformational changes on supercoiled DNA by converting supercoiled form to nicked form than linear form in a sequential manner as the complex concentration or reaction period is increased, K3 is less effective than the two others. The oxime complexes were nucleolytically active at physiological pH values but the activities of K1 or K2 were diminished by increasing the pH of the reaction mixture. In contrast, K3 makes dominantly single strand nicking by producing nicked circles on DNA at almost all the applied pH values. Metal complex induced DNA cleavage was also tested for inhibition by various radical scavengers as superoxide dismutase (SOD), azide, thiourea and potassium iodide. The antioxidants inhibited the nucleolytic acitivities of the oxime complexes but SOD afforded no protection indicating that the nucleolytic mechanism involves of copper and/or manganese complex-mediated reactive oxygen species such as hydroxyl radicals being responsible for the oxidative DNA cleavage.  相似文献   

20.
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号