首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 88 毫秒
1.
转双抗虫基因杂种741毛白杨的研究   总被引:35,自引:0,他引:35  
用部分改造后的苏云金芽孢杆菌 (Bt)杀虫蛋白基因和慈菇蛋白酶抑制剂 (API)基因A构建了植物表达载体。然后通过根癌土壤杆菌 (Agrobacteriumtumefaciens (SmithetTownsend)Conn .)介导将此表达载体上的双抗虫基因转入杂种 741毛白杨 [PopulusalbaL .× (P .davidianaDode P .simoniiCarr.)×P .tomentosaCarr.]获得了一批抗卡那霉素的转化再生植株。用杨扇舟蛾 (Closteraanachoreta (Fabricius) )进行虫试的结果表明有 3株抗虫杨树 ,其中有1株杨树的叶片可使试虫在 6天内的死亡率达 90 %以上 ,而且存活幼虫的生长发育受到了明显的抑制。PCR检测及基因组DNASouthern杂交分析的结果都表明Bt杀虫蛋白基因和API基因已整合到以上 3株抗虫杨树的基因组中 ,而且表现为单拷贝整合。用Bt毒蛋白抗血清进行滤膜免疫反应及ELISA检测结果表明 3株转基因杨树都有Bt杀虫蛋白的表达 ,表达量约占叶总可溶性蛋白的 0 .0 15 %。这是国内外首次报道用双抗虫基因获得的抗虫 741毛白杨植株。  相似文献   

2.
转新型双抗虫基因棉花的遗传分析   总被引:8,自引:0,他引:8  
首次用含合成的BtCrylAc活性杀虫蛋白嵌合基因及慈菇蛋白酶抑制剂B(API-B)基因表达框的双抗虫基因植物表达载体,通过土壤根癌杆菌介导转化棉花品种冀合321,获得一批抗虫的转化再生棉花植株。利用叶片涂抹卡那霉素、叶片离体养虫和PCR扩增等检测方法对6个不同转双抗虫基因株系的抗虫性进行遗传分析。结果显示,转化株系自交的T1抗虫性状遗传较为复杂;农杆菌介导获得的转基因抗虫棉在早期世代不易选到纯合系,但是随着对抗虫性状进行单向选择,到T4和T5就能获得抗虫纯合系。利用抗虫性稳定的转化后代材料和转化受体进行田间杂交,发现F2抗虫性分离完全符合一对或两对显性基因的分离规律,并证明了DR248和DR193两个材料为外源基因双拷贝插入。转化株系的Southern杂交也证明了上述结果。  相似文献   

3.
牟红梅  刘树俊 《遗传学报》1999,26(6):634-642
慈菇蛋白酶制剂(ArrowheadProteinasInhibitor,API)是来源于慈菇(Sagittariatrifolia)储藏器官的一种天抗虫物质,属于丝氨酸蛋白酶抑制剂类,能抑制胰蛋白酶、胰凝乳蛋白酶和激肽释放酶,对某些鳞翅目,双翅目以及鞘翅目等昆虫有毒杀作用。  相似文献   

4.
慈菇蛋白酶抑制剂研究进展   总被引:3,自引:0,他引:3  
潘进权  刘耘 《生命的化学》2001,21(5):366-367
蛋白酶抑制剂是一类能够抑制蛋白水解酶活性的物质。根据它们抑制的蛋白酶类型可分为丝氨酸、半胱氨酸、天冬氨酸、和金属蛋白酶抑制剂[1] 。由于它们能抑制昆虫肠道内以及一些病原微生物体内的蛋白酶[2~ 6 ] ,因此蛋白酶抑制剂在植物对昆虫和病原体的侵染防御系统中具有重要的作用。慈菇蛋白酶抑制剂A、B是从慈菇球茎中分离纯化的双头多功能蛋白酶抑制剂 ,除了具备其他蛋白酶抑制剂在抗虫抗病方面的特点外 ,还有很多独特的优点。如 ,含量丰富、比活力高而且稳定 ;广谱性强 ;对胰蛋白酶、胰凝乳蛋白酶、激肽释放酶等多种蛋白酶有较强的抑…  相似文献   

5.
用AcMNPV的gp67信号肽与慈菇蛋白酶抑制剂基因(API2)融合,并整合到昆虫病毒表达载体Bm—BacPAK6中,受多角体蛋白基因启动子控制。慈菇蛋白酶抑制剂在蚕体内成功地得到了高教表达。比较了gp67信号肽和慈菇蛋白酶抑制剂信号肽在昆虫表达系统中对表达产物的影响,发现表达产物都能分泌到血淋巴中,表达量很相似,但这两种信号肽在表达过程中都没有被切除,且不同信号肽对表达产物的生物活性有很大影响。  相似文献   

6.
用AcMNPV的gp67信号肽与慈菇蛋白酶抑制剂基因(API2)融合,并整合到昆虫病毒表达载体BmBacPAK6中,受多角体蛋白基因启动子控制。慈菇蛋白酶抑制剂在蚕体内成功地得到了高效表达。比较了gp67信号肽和慈菇蛋白酶抑制剂信号肽在昆虫表达系统中对表达产物的影响,发现表达产物都能分泌到血淋巴中,表达量很相似,但这两种信号肽在表达过程中都没有被切除,且不同信号肽对表达产物的生物活性有很大影响。  相似文献   

7.
植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用   总被引:7,自引:0,他引:7  
植物蛋白酶抑制剂(proteinase inhibitors,PI)能与昆虫蛋白酶的活性部位或变构部位结合,抑制酶的催化活性,导致昆虫发育不正常甚至死亡。蛋白酶抑制剂基因是抗虫基因工程中一类重要的目的基因,具有作用位点独特,抗虫谱广等独持优点。本文从蛋白酶抑制剂的分类,作用机制,转基因研究及其应用前景等方面进行了综述。  相似文献   

8.
根据植物基因的结构特征,合成了CrylAc活性杀虫蛋白的编码序列并与内质网定位肽编码序列组成嵌合杀虫蛋白基因Bt29K.构建了含Bt29K基因及慈菇蛋白酶抑制剂B(API-B)基因表达框的双抗虫基因植物表达载体.通过根癌土壤杆菌(Agrobacteriumtumefaciens(Smith et Townsend)Conn LBA4404)介导转化了棉花(Gossypium hirsu-tun L.)的两个生产品种(系).根据抗棉铃虫(Heliothis armigera)试验及农艺性状的观察调查结果,经6代筛选,获得了抗棉铃虫90.0%~99.7%且农艺性状优良的9个双价抗虫棉纯合品系.分子生物学分析结果表明,两个抗虫基因在棉花基因组中的插入拷贝数为1个或2个.活性Cry1Ac和API-B蛋白在转基因抗虫棉株系中的表达量分别约占总可溶性蛋白的0.17%和0.09%.对双抗纯合系植株及仅转Bt基因的棉花纯合系抗虫性检测结果表明前者的抗虫性明显高于后者,因此推断本研究采用的双抗虫基因表达载体构建策略是合理的.  相似文献   

9.
转抗虫基因植物对蜜蜂的影响   总被引:3,自引:0,他引:3  
刘艳荷  陈盛禄 《昆虫知识》2001,38(4):258-262
苏云金杆菌 (Bacillusthuringiensis,Bt)毒蛋白基因、蛋白酶抑制剂基因是广泛用于植物抗虫基因工程的两大类基因。Bt毒蛋白对蜜蜂没有明显毒害作用 ,但对草蛉、瓢虫等有益昆虫的繁殖、发育具有不良影响 ,而且在花粉中表达 ,因此转Bt基因植物对蜜蜂的影响有待于进一步研究。蛋白酶抑制剂浓度高时 ,对蜜蜂具有明显的毒害作用。随着基因工程技术的发展 ,蛋白酶抑制剂基因表达水平的提高 ,转基因植物必将对蜜蜂产生一些不良影响。蜜蜂仅取食植物的花蜜和花粉 ,可以采用不同的启动子 ,使抗虫基因只在害虫取食部位表达 ,而在花蜜和花粉中不表达 ,以确保既能抗虫 ,又对蜜蜂安全  相似文献   

10.
蛋白酶抑制剂及其在抗虫基因工程中的应用   总被引:41,自引:0,他引:41  
蛋白酶抑制剂可以抑制昆虫的生长和发育,近年来在抗虫基因工程得广泛的应用。本文综述了蛋白酶抑制剂及其抗虫性,蛋白酶抑制剂转基因植物的研究概况,同时探讨了蛋白酶抑制剂在抗虫基因工程中的利用前景、存在问题和解决途径。  相似文献   

11.
The objective of this study was to determine whether the viral reduction processes of nanofiltration and solvent/detergent treatment used in the manufacture of alpha-1 proteinase inhibitor (API) cause neoantigenic changes. Polyclonal antibodies were raised in rabbits against the treated API and quantitatively absorbed with an affinity column containing API that had not undergone viral reduction treatment. Antibodies before and after absorption were measured in a validated ELISA using the immunogen for antibody capture. Antibodies against novel API epitopes were not found after antiserum from rabbits inoculated with treated API was absorbed with untreated API. A positive control, consisting of serum obtained from rabbits inoculated with trinitrophenylated API, showed substantial amounts of measurable antibody following absorption with untreated API. The results suggest that the viral reduction process used does not result in the creation of API neoantigens.  相似文献   

12.
Summary Two cDNA clones containing the complete coding region of a developmentally controlled (tuber-specific) as well as environmentally inducible (wound-inducible) gene from potato (Solanum tuberosum) have been sequenced. The open reading frame codes for 154 amino acids. Its sequence is highly homologous to the proteinase inhibitor II from tomato, indicating that the cDNA's encode the corresponding proteinase inhibitor II of potato. In addition the putative potato proteinase inhibitor II contains a sequence which is completely homologous with that of another small peptide proteinase inhibitor from potato, called PCI-I. Evidence is presented that this small peptide is probably derived from the proteinase inhibitor II by posttranslational processing.Northern type experiments using RNA from wounded and nonwounded leaves demonstrate that RNA homologous to the putative proteinase inhibitor II cDNA's accumulates in leaves as a consequence of wounding, whereas normally the expression of this gene is under strict developmental control, since it is detected only in tubers of potato (Rosahl et al. 1986). In addition the induction of this gene in leaves can also be achieved by the addition of different polysaccharides such as poly galacturonic acid or chitosan. In contrast to the induction of its expression by wounding in leaves, wounding of tubers results in a disappearance of the proteinase II inhibitor m-RNA from these organs.  相似文献   

13.
An inhibitor of the muscle calcium-activated proteinases has been purified from porcine skeletal muscle by using DEAE-cellulose column chromatography, thermal treatment, Sephacryl S-400 column chromatography in 6 M urea and Sephacryl S-300 column chromatography in 6 M urea. Sodium dodecyl sulfate polyacrylamide slab gel electrophoresis shows that the purified inhibitor is homogeneous and has a subunit molecular weight of 172 000. The inhibitor inactivates both the low- and high-calcium-requiring forms of the calcium-activated proteinase but does not inhibit other proteinases against which it has been tried. It thus appears that the inhibitor is specific for the calcium-activated proteinase. Studies using homogeneous inhibitor and high-calcium-requiring proteinase show that one molecule of the inhibitor can inactivate up to eight molecules of the calcium-activated proteinase. Inactivation of the calcium-activated proteinase by the inhibitor cannot be reversed by calcium concentrations as high as 25 mM, thus eliminating the possibility that the inhibitor functions by chelating calcium. The inhibitory peptide appears to be extremely susceptible to proteolysis during its isolation. Even in the presence of synthetic proteinase inhibitors different inhibitor preparations yield homogeneous inhibitory peptides ranging in molecular weight from 145 000 to 172 000. Preparative electrophoresis and column chromatography have been used to isolate putative proteolytic breakdown products of the 172 kDa peptide at 145, 114, 41 and 29 kDa.  相似文献   

14.
A trypsin proteinase inhibitor has been purified to homogeneity from the skeletal muscle of white croaker (Micropogon opercularis). Previously, we had described the occurrence in fish muscle of a serine protease (proteinase I) which showed a great capacity to degrade whole myofibrils in vitro and an endogenous inhibitor that prevented the action of the protease, both on natural and artificial substrates. In this paper, we report the purification and further biochemical characterization of the endogenous trypsin inhibitor. The purification was carried out by DEAE-Sephacel, Con A-Sepharose, Sephacryl S-300 and Mono Q. Throughout the purification procedure, trypsin inhibitory activity was assayed using azocasein as substrate. The molecular mass of the inhibitor was 65 kDa, as estimated by SDS-PAGE and gel filtration. The trypsin inhibitor is a glycoprotein, as deduced by the fact that it binds to Con A-Sepharose and stains with PAS and showed a wide range of pH stability (from 5 to 11). The thermal stability of the inhibitor considerably decreased at temperatures >60 degrees C. Assays of the inhibitor against various proteases indicated that it is highly specific for serine proteases, since it did not inhibit proteases belonging to any other groups. The inhibitor was able to inhibit the endogenous target enzyme (proteinase I) in a dose-dependent manner, with a 50% inhibition at a molar ratio close to 1. The present work contributes to improving our understanding of the physiological role of the proteinase I-inhibitor system in muscle protein breakdown, as well as its influence on post mortem proteolysis.  相似文献   

15.
A Streptomyces sp., which produces an alkaline protease inhibitor (API) exhibiting antifungal activity has been isolated from soil. The protein has been purified to homogeneity. The molecular characterization has revealed that it is a dimer (M(r) 28 kDa) with five disulphide linkages and has a pI of 3.8. API is a competitive type of inhibitor with a K(i) value of 2.5 x 10(-9) M. The inhibitor is stable over a pH range of 6 to 12 and a temperature range of 40 to 95 degrees C. API exhibits antifungal activity (in vitro) against phytopathogenic fungi such as Fusarium, Alternaria, and Rhizoctonia and also against Trichoderma, a saprophytic fungus. The antifungal activity of API appears to be associated with its ability to inhibit the fungal serine alkaline protease(s), which is indispensable for its growth. Retardation of the rate of fungal spore germination, as well as hyphal extention, was observed in the presence of API. Both the protease inhibitory and the antifungal activity were abolished on treatment of API with DTT (5 mM), suggestive of a common site for both the activities. This is the first report on API as a potential biocontrol agent against phytopathogenic fungi.  相似文献   

16.
We have studied the capacity of the prepro amino extension of vacuolar protease leucine aminopeptidase I (API) to target the fluorescent reporter protein GFP to the vacuole of yeast. The preproGFP chimera constructed by extending the amino end of GFP with the prepro-part of API is rapidly degraded in both wild-type WCG cells and WCG 11/21a cells deficient in the proteasome. In contrast, the chimera expressed in WCG-PP cells deficient in both proteasome activity and vacuolar proteinase A accumulates in the vacuole, where it remains stable. Replacement of Gly by Ile-7, a substitution that prevents folding of the pre-part into an amphipathic helix and inhibits the targeting of the API precursor to the vacuole, inhibits the targeting of preproGFP to the vacuole. The separated pre- and pro-parts of the API precursor do not target GFP to the vacuole. Targeting of preproGFP to the vacuole is independent of its levels of expression, as the fluorescent protein localizes to the vacuole in cells expressing the protein under the control of both the GAL 1/10 or the API promoter. The preproGFP expressed under both promoters is recovered as monomers from cytosolic cell extracts. PreproGFP expressed under the API promoter is packed into cytoplasmic bodies that penetrate into the vacuolar lumen to release the protein. Altogether our results show that the prepro-part of the API precursor is necessary and sufficient to target the green fluorescent reporter protein to the vacuole.  相似文献   

17.
W E Brown  K Takio  K Titani  C A Ryan 《Biochemistry》1985,24(9):2105-2108
The primary structure of the wound-inducible trypsin inhibitor from alfalfa (ATI) establishes it as a member of the Bowman-Birk proteinase inhibitor family. The time course of induction of ATI in alfalfa following wounding is similar to the induction of the nonhomologous proteinase inhibitors I and II in tomato and potato leaves, and, like inhibitors I and II, ATI is induced to accumulate in excised leaves supplied with the proteinase inhibitor inducing factor from tomato leaves. The similarity of the wound induction of ATI to that of inhibitors I and II indicates that wound-regulated systems are present in Solanaceae and Leguminosae plant families that possess a common fundamental recognition system regulating synthesis of proteinase inhibitors in response to pest attacks. ATI is the first Bowman-Birk inhibitor that has been found in leaves and is the only member of this family known to be regulated by wounding.  相似文献   

18.
The serpinopathies result from conformational transitions in members of the serine proteinase inhibitor superfamily with aberrant tissue deposition or loss of function. They are typified by mutants of neuroserpin that are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. We show here that the S49P mutant of neuroserpin that causes the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) forms a latent species in vitro and in vivo in addition to the formation of polymers. Latent neuroserpin is thermostable and inactive as a proteinase inhibitor, but activity can be restored by refolding. Strikingly, latent S49P neuroserpin is unlike any other latent serine proteinase inhibitor (serpin) in that it spontaneously forms polymers under physiological conditions. These data provide an alternative method for the inactivation of mutant neuroserpin as a proteinase inhibitor in FENIB and demonstrate a second pathway for the formation of intracellular polymers in association with disease.  相似文献   

19.
An endogenous inhibitor of calcium activated neutral proteinase has been purified from human placenta. The procedure included chromatography on DEAE cellulose, Ultrogel AcA 22 and milli calcium activated neutral proteinase-sepharose in succession. Endogenous calcium activated neutral proteinase inhibitor was a tetramer with identical subunits of molecular weight 68 kDa. It was specific for milli calcium activated neutral proteinase (Calpain II) which is inhibited by the formation of an inactive enzyme-inhibitor complex and not by sequestering Ca2+ from the medium. Although micro calcium activated neutral proteinase (Calpain I) was not inhibited by endogenous calcium activated neutral proteinase inhibitor, it was protected from autolysis in the presence of the inhibitor. The placental endogenous calcium activated neutral proteinase inhibitor thus regulates Ca2+ activated proteolysis by ensuring micro calcium activated neutral proteinase activity, while inhibiting milli calcium activated neutral proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号