首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non‐small cell lung cancer (NSCLC) accounts for most lung cancer. To develop new therapy required the elucidation of NSCLC pathogenesis. The deubiquitinating enzymes USP 28 has been identified and studied in colon and breast carcinomas. However, the role of USP28 in NSCLC is unknown. The level mRNA or protein level of USP28 were measured by qRT‐PCR or immunohistochemistry (IHC). The role of USP28 in patient survival was revealed by Kaplan–Meier plot of overall survival in NSCLC patients. USP28 was up or down regulated by overexpression plasmid or siRNA transfection. Cell proliferation and apoptosis was assayed by MTT and FACS separately. Potential microRNAs, which targeted USP28, were predicated by bioinformatic algorithm and confirmed by Dual Luciferase reporter assay system. High mRNA and protein level of USP28 in NSCLC were both correlated with low patient survival rate. Overexpression of USP28 promoted NSCLC cells growth and vice versa. Down‐regulation of USP28 induced cell apoptosis. USP28 was targeted by miR‐4295. Overexpression of USP28 promoted NSCLC cells proliferation, and was associated with poor prognosis in NSCLC patients. The expression of USP28 may be regulated by miR‐4295. Our data suggested that USP28 was a tumour‐promoting factor and a promising therapeutic target for NSCLC.  相似文献   

2.
3.
miR-3940-5p level was lower in non–small cell lung cancer (NSCLC) tumor tissues than that in the matched tumor-adjacent tissues and correlated with clinicopathological features. Cyclin D1 (CCND1), a key driver of malignant transformation in NSCLC, was overexpressed in many cancers, including NSCLC. The ubiquitin specific peptidase-28 (USP28) was also overexpressed in NSCLC and associated with poor prognosis of NSCLC patients. We searched for miR-3940-5p targets by using TargetScan and miRanda online tools and found that CCND1 and USP28 were potential targets of miR-3940-5p. Based on these findings, we speculated that miR-3940-5p might target CCND1 and USP28 to inhibit NSCLC growth. We determined the expression of miR-3940-5p, CCND1, and USP28 by quantitative real-time polymerase chain reaction and Western blot assays, respectively, and found downregulation of miR-3940-5p and upregulation of CCND1 and USP28 in NSCLC tissues and cell lines. Cell proliferation and apoptosis assays showed that miR-3940-5p suppressed proliferation and promoted apoptosis in NSCLC cells, and silencing CCND1 and USP28 both recapitulated the effects of miR-3940-5p on NSCLC cells. Furthermore, we verified that CCND1 and USP28 were direct targets of miR-3940-5p and also found that the effects of NSCLC cell proliferation and apoptosis by miR-3940-5p were attenuated by overexpression of CCND1 or USP28. The animal experiments also showed that overexpression of miR-3940-5p inhibited the growth of NSCLC tumors in vivo. These results confirmed our speculation that miR-3940-5p inhibits proliferation and induces apoptosis in NSCLC cells by targeting CCND1 and USP28. These findings facilitate a better understanding of the molecular mechanisms underlying NSCLC initiation and progression and provide promising diagnostic markers and therapeutic targets for NSCLC.  相似文献   

4.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

5.
Although clinical data suggest remarkable promise for targeting programmed cell death protein-1 (PD-1) and ligand (PD-L1) signaling in non-small-cell lung cancer (NSCLC), it is still largely undetermined which subtype of patients will be responsive to checkpoint blockade. In the present study, we explored whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS), which is frequently mutated in NSCLC and results in poor prognosis and low survival rates. We verified that PD-L1 levels were dramatically increased in KRAS mutant cell lines, particularly in NCI-H441 cells with KRAS G12V mutation. Overexpression of KRAS G12V remarkably elevated PD-L1 messenger RNA and protein levels, while suppression of KRAS G12V led to decreased PD-L1 levels in NCI-H441 cells. Consistently, higher levels of PD-L1 were observed in KRAS-mutated tissues as well as tumor tissues-derived CD4+ and CD8+ T cells using a tumor xenograft in B-NDG mice. Mechanically, both in vitro and in vivo assays found that KRAS G12V upregulated PD-L1 via regulating the progression of epithelial-to-mesenchymal transition (EMT). Moreover, pembrolizumab activated the antitumor activity and decreased tumor growth with KRAS G12V mutated NSCLC. This study demonstrates that KRAS G12V mutation could induce PD-L1 expression and promote immune escape via transforming growth factor-β/EMT signaling pathway in KRAS-mutant NSCLC, providing a potential therapeutic approach for NSCLC harboring KRAS mutations.  相似文献   

6.
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Ubiquitination is closely related to the development of lung cancer. However, the biological importance of newly discovered ubiquitin-specific peptidase (USP) 52 (USP52) in NSCLC remained unclear. Here, our findings identify USP52 as a novel tumor suppressor of NSCLC, the low expression of USP52 predicts a poor prognosis for NSCLC patients. The present study demonstrates that USP52 inhibits cancer cell proliferation through down-regulation of cyclin D1 (CCND1) as well as AKT/mTOR signaling pathway inhibition. Meanwhile, USP25 also suppresses NSCLC progression via enhancing phosphatase and tensin homolog (PTEN) stability in cancer cells, which further indicates the significance/importance of USP52 in NSCLC suppression.  相似文献   

7.
Cisplatin remains the most effective therapy for non-small cell lung cancer (NSCLC). We previously have found cisplatin-resistant lung cancer cells (A549CisR and H157CisR) were more resistant to natural killer (NK) cell-mediated cytotoxicity than parental cells. We also discovered that fatty acid synthase (FASN) levels in cisplatin-resistant cells were significantly higher than in parental cells. To reveal whether a link exists between the up-regulated FASN levels and higher resistance to NK cell cytotoxicity, we performed inhibition studies using a FASN inhibitor and applied the FASN knockdown approach. In both approaches, we found that the FASN inhibition/knockdown significantly increased the susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We further found such decreased susceptibility was associated with an increased programmed death receptor ligand (PD-L1) level in cisplatin-resistant cells. In mechanisms studies, TGF-β1 was found to be the FASN downstream signaling molecule that was responsible for modulating the PD-L1 levels in cisplatin-resistant cells. Accordingly, TGF-β1 inhibition resulted in significantly increased susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We suggest that the inhibition of FASN-TGFβ1-PD-L1 axis may improve the efficacy of immunotherapy in treating cisplatin-resistant lung cancer.  相似文献   

8.
《Genomics》2023,115(4):110648
Programmed death-ligand 1 (PD-L1) has been widely used in immunotherapy evaluation of patients with non-small cell lung cancer (NSCLC). However, the effect is not particularly ideal, and the association between PD-L1 and genetic alterations requires more exploration. Here, we performed targeted next-generation sequencing and PD-L1 immunohistochemistry (IHC) testing for PD-L1 expression on both tumor cells (TCs) and tumor-infiltrating immune cells (ICs) in 1549 patients. Our studies showed that surgical method of resection was positively correlated with IC+, and a low tumor mutation burden (TMB) was negatively correlated with TC+. Furthermore, we found that EGFR was mutually exclusive with both ALK and STK11. In addition, the features between PD-L1 expression status and genomic alterations were characterized. These results suggest that clinical characteristics and molecular phenotypes are associated with PD-L1 expression signatures, which may provide novel insights for improving the efficiency of immune checkpoint inhibitors (ICIs) in immunotherapy.  相似文献   

9.

Background

Immunotherapy can become a crucial therapeutic option to improve prognosis for lung cancer patients. First clinical trials with therapies targeting the programmed cell death receptor PD-1 and its ligand PD-L1 have shown promising results in several solid tumors. However, in lung cancer the diagnostic, prognostic and predictive value of these immunologic factors remains unclear.

Method

The impact of both factors was evaluated in a study collective of 321 clinically well-annotated patients with non-small lung cancer (NSCLC) using immunohistochemistry.

Results

PD-1 expression by tumor infiltrating lymphocytes (TILs) was found in 22%, whereas tumor cell associated PD-L1 expression was observed in 24% of the NSCLC tumors. In Fisher’s exact test a positive correlation was found for PD-L1 and Bcl-xl protein expression (p = 0.013). Interestingly, PD-L1 expression on tumor cells was associated with improved overall survival in pulmonary squamous cell carcinomas (SCC, p = 0.042, log rank test), with adjuvant therapy (p = 0.017), with increased tumor size (pT2-4, p = 0.039) and with positive lymph node status (pN1-3, p = 0.010). These observations were confirmed by multivariate cox regression models.

Conclusion

One major finding of our study is the identification of a prognostic implication of PD-L1 in subsets of NSCLC patients with pulmonary SCC, with increased tumor size, with a positive lymph node status and NSCLC patients who received adjuvant therapies. This study provides first data for immune-context related risk stratification of NSCLC patients. Further studies are necessary both to confirm this observation and to evaluate the predictive value of PD-1 and PD-L1 in NSCLC in the context of PD-1 inhibition.  相似文献   

10.
The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer.  相似文献   

11.
Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti–PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.  相似文献   

12.
The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.  相似文献   

13.
The Wilms’ tumor suppressor gene (WT1) has been identified as an oncogene in many malignant diseases such as leukaemia, breast cancer, mesothelioma and lung cancer. However, the role of WT1 in non-small-cell lung cancer (NSCLC) carcinogenesis remains unclear. In this study, we compared WT1 mRNA levels in NSCLC tissues with paired corresponding adjacent tissues and identified significantly higher expression in NSCLC specimens. Cell proliferation of three NSCLC cell lines positively correlated with WT1 expression; moreover, these associations were identified in both cell lines and a xenograft mouse model. Furthermore, we demonstrated that up-regulation of Cyclin D1 and the phosphorylated retinoblastoma protein (p-pRb) was mechanistically related to WT1 accelerating cells to S-phase. In conclusion, our findings demonstrated that WT1 is an oncogene and promotes NSCLC cell proliferation by up-regulating Cyclin D1 and p-pRb expression.  相似文献   

14.
15.
BACKGROUND: Recent clinical trial results have suggested that programmed cell death ligand 1 (PD-L1) expression measured by immunohistochemistry may predict response to anti–programmed cell death 1 (PD-1) therapy. Results on the association between PD-L1 expression and survival among patients with advanced non–small cell lung cancer (NSCLC) treated with chemotherapy are inconsistent. MATERIAL AND METHODS: We evaluated the relationship between PD-L1 expression and overall survival (OS) among 204 patients with advanced NSCLC treated at Aarhus University Hospital, Aarhus, Denmark, from 2007 to 2012. PD-L1 expression was measured using a prototype immunohistochemistry assay with the anti–PD-L1 22C3 antibody (Merck). PD-L1 strong positivity and weak positivity were defined to be traceable to the clinical trial version of the assay. RESULTS: Twenty-five percent of patients had PD-L1 strong-positive tumors, and 50% had PD-L1 weak-positive tumors. No statistically significant association was found between PD-L1 expression and survival; adjusted hazard ratio of 1.34 (95% confidence interval, 0.88-2.03; median OS, 9.0 months) for the PD-L1 strong-positive group and 1.07 (0.74-1.55; median OS, 9.8 months) for the PD-L1 weak-positive group compared with the PD-L1–negative group (median OS, 7.5 months). No association was seen between PD-L1 expression and OS when PD-L1 expression levels were stratified by median or tertiles. CONCLUSIONS: In concordance with previous studies, we found PD-L1 measured by immunohistochemistry to be frequently expressed in patients with advanced NSCLC. However, PD-L1 expression is not a strong prognostic marker in patients with advanced NSCLC treated with chemotherapy.  相似文献   

16.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.  相似文献   

17.
Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role ofUSP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1inlungcancer cells, providing apreviouslyunknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.  相似文献   

18.
Expression of programmed death-ligand 1 (PD-L1) in tumor cells such as lung cancer cells plays an important role in mechanisms underlying evasion of an immune check point system. Lung cancer tissue with increased deposition of extracellular matrix is much stiffer than normal lung tissue. There is emerging evidence that the matrix stiffness of cancer tissue affects the phenotypes and properties of cancer cells. Nevertheless, the effects of substrate rigidity on expression of PD-L1 in lung cancer cells remain elusive. We evaluated the effects of substrate stiffness on PD-L1 expression in HCC827 lung adenocarcinoma cells by using polyacrylamide hydrogels with stiffnesses of 2 and 25?kPa. Expression of PD-L1 protein was higher on the stiffer substrates (25?kPa gel and plastic dish) than on the soft 2?kPa gel. PD-L1 expression was reduced by detachment of cells adhering to the substrate. Interferon-γ enhanced expression of PD-L1 protein cultured on stiff (25?kPa gel and plastic dishes) and soft (2?kPa gel) substrates and in the cell adhesion-free condition. As the stiffness of substrates increased, formation of actin stress fiber and cell growth were enhanced. Transfection of the cells with short interfering RNA for PD-L1 inhibited cell growth without affecting stress fiber formation. Treatment of the cells with cytochalasin D, an inhibitor of actin polymerization, significantly reduced PD-L1 protein levels. Taken together, a stiff substrate enhanced PD-L1 expression via actin-dependent mechanisms in lung cancer cells. It is suggested that stiffness as a tumor environment regulates PD-L1 expression, which leads to evasion of the immune system and tumor growth.  相似文献   

19.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

20.
In recent years, although Immune Checkpoint Inhibitors (ICIs) significantly improves survival both in local advanced stage and advanced stage of non-small cell lung cancer (NSCLC), the objective response rate of ICI monotherapy is still only about 20%. Thus, to identify the mechanisms of ICI resistance is critical to increase the efficacy of ICI treatments. By bioinformatics analysis, we found that the expression of regulator of chromosome condensation 1 (RCC1) in lung adenocarcinoma was significantly higher than that in normal lung tissue in TCGA and Oncomine databases. The survival analysis showed that high expression RCC1 was associated with the poor prognosis of NSCLC. And the expression of RCC1 was inversely related to the number of immune cell infiltration. In vitro, knockdown of RCC1 not only significantly inhibited the proliferation of lung adenocarcinoma cells but also increased the expression levels of p27kip1 and PD-L1, and decreased the expression level of CDK4 and p-Rb. In vivo, knockdown of RCC1 significantly slowed down the growth rate of tumour, and further reduced the volume and weight of tumour model after treated by PD-L1 monoclonal antibody. Therefore, RCC1 could up-regulate the expression level of PD-L1 by regulating p27kip1/CDK4 pathway and decrease the resistance to ICIs. And this study might provide a new way to increase the efficacy of PD-L1 monoclonal antibody by inhibiting RCC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号