首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection–diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   

2.
In the context of drug eluting stent, we present two-dimensional numerical models of mass transport of the drug in the wall and in the lumen to study the effect of the drug diffusion coefficients in the three principal media (blood, vascular wall, and polymer coating treated as a three-compartment problem) and the impact of different strut apposition configurations (fully embedded, half embedded, and not embedded). The different conditions were analyzed in terms of their consequence on the drug concentration distribution in the arterial wall. We apply the concept of the therapeutic window to the targeted vascular wall region and derive simple metrics to assess the efficiency of the various stent configurations. Although most of the drug is dispersed in the lumen, variations in the blood flow rate within the physiological range of coronary blood flow and the diffusivity of the drug molecule in the blood were shown to have a negligible effect on the amount of drug in the wall. Our results reveal that the amount of drug cumulated in the wall depends essentially on the relative values of the diffusion coefficients in the polymer coating and in the wall. Concerning the strut apposition, it is shown that the fully embedded strut configuration would provide a better concentration distribution.  相似文献   

3.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection-diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   

4.
Despite technical and mechanical improvement in coronary stents the incidence of restenosis caused by in-stent neointimal hyperplasia remains high. Oral administration of numerous pharmacological agents has failed to reduce restenosis after coronary stenting in humans, possibly owing to insufficient local drug concentration. Therefore, drug-eluting stents were developed as a vehicle for local drug administration. The authors developed a new drug-eluting polymer stent that is made of poly-l-lactic acid polymer mixed with tranilast, an anti-allergic drug that inhibits the migration and proliferation of vascular smooth muscle cells induced by platelet-derived growth factor and transforming growth factor->1. Polymer stents might be superior to polymer-coated metallic stents as local drug delivery stents in terms of biodegradation and the amount of loaded drug. Drug-mixed polymer stents can be loaded with a larger amount of drug than can drug-coated metallic stents because the polymer stent struts can contain the drug. Clinical application is required to assess the safety and efficacy of drug-eluting polymer stents against stent restenosis.  相似文献   

5.
The emergence of drug-eluting stents (DES) as a viable replacement for bare metal stenting has led to a significant decrease in the incidence of clinical restenosis. This is due to the transport of anti-restenotic drugs from within the polymer coating of a DES into the artery wall which arrests the cell cycle before restenosis can occur. The efficacy of DES is still under close scrutiny in the medical field as many issues regarding the effectiveness of DES drug transport in vivo still exist. One such issue, that has received less attention, is the limiting effect that stent strut compression has on the transport of drug species in the artery wall. Once the artery wall is compressed, the stents ability to transfer drug species into the arterial wall can be reduced. This leads to a reduction in the spatial therapeutic transfer of drug species to binding sites within the arterial wall. This paper investigates the concept of idealised variable compression as a means of demonstrating how such a stent design approach could improve the spatial delivery of drug species in the arterial wall. The study focused on assessing how the trends in concentration levels changed as a result of artery wall compression. Five idealised stent designs were created with a combination of thick struts that provide the necessary compression to restore luminal patency and thin uncompressive struts that improve the transport of drugs therein. By conducting numerical simulations of diffusive mass transport, this study found that the use of uncompressive struts results in a more uniform spatial distribution of drug species in the arterial wall.  相似文献   

6.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

7.
Coronary artery disease can be treated by implanting a stent into the blocked region of an artery, thus enabling blood perfusion to distal vessels. Minimally invasive procedures of this nature often result in damage to the arterial tissue culminating in the re-blocking of the vessel. In an effort to alleviate this phenomenon, known as restenosis, drug eluting stents were developed. They are similar in composition to a bare metal stent but encompass a coating with therapeutic agents designed to reduce the overly aggressive healing response that contributes to restenosis. There are many variables that can influence the effectiveness of these therapeutic drugs being transported from the stent coating to and within the artery wall, many of which have been analysed and documented by researchers. However, the physical deformation of the artery substructure due to stent expansion, and its influence on a drugs ability to diffuse evenly within the artery wall have been lacking in published work to date. The paper highlights previous approaches adopted by researchers and proposes the addition of porous artery wall deformation to increase model accuracy.  相似文献   

8.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

9.
In this paper, starting from a consistent mathematical model, a novel computational approach is proposed for assessing some biomechanical effects on drug release from coronary drug-eluting stents (DESs), related to tissue properties, local hemodynamics and stent design. A multiscale and multidomain advection–diffusion model is formulated for describing drug dynamics in the polymeric substrate covering the stent, into the arterial wall, and in the vessel lumen. The model accounts for tissue microstructure (anisotropic drug diffusion, porosity, drug retention induced by resident proteins), macrostructure (plaque between stent and tissue), and local hemodynamics. In the case of hydrophobic taxus-based compounds, several numerical analyses have been carried out on simplified geometries by using finite element simulations, performing significant comparisons with other recent studies and highlighting general conclusions for assessing effectiveness of some modelling features as well as useful hints for optimizing drug delivery design and technology.  相似文献   

10.
Cardiovascular stent design and vessel stresses: a finite element analysis   总被引:19,自引:0,他引:19  
Intravascular stents of various designs are currently in use to restore patency in atherosclerotic coronary arteries and it has been found that different stents have different in-stent restenosis rates. It has been hypothesized that the level of vascular injury caused to a vessel by a stent determines the level of restenosis. Computational studies may be used to investigate the mechanical behaviour of stents and to determine the biomechanical interaction between the stent and the artery in a stenting procedure. In this paper, we test the hypothesis that two different stent designs will provoke different levels of stress within an atherosclerotic artery and hence cause different levels of vascular injury. The stents analysed using the finite-element method were the S7 (Medtronic AVE) and the NIR (Boston Scientific) stent designs. An analysis of the arterial wall stresses in the stented arteries indicates that the modular S7 stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. These results correlate with observed clinical restenosis rates, which have found higher restenosis rates in the NIR compared with the S7 stent design. Therefore, the testing methodology outlined here is proposed as a pre-clinical testing tool, which could be used to compare and contrast existing stent designs and to develop novel stent designs.  相似文献   

11.
Despite the considerable progress made in the stent development in the last decades, cardiovascular diseases remain the main cause of death in western countries. Beside the benefits offered by the development of different drug-eluting stents, the coronary revascularization bears also the life-threatening risks of in-stent thrombosis and restenosis. Research on new therapeutic strategies is impaired by the lack of appropriate methods to study stent implantation and restenosis processes. Here, we describe a rapid and accessible procedure of stent implantation in mouse carotid artery, which offers the possibility to study in a convenient way the molecular mechanisms of vessel remodeling and the effects of different drug coatings.  相似文献   

12.

Background  

The process of restenosis after a stenting procedure is related to local biomechanical environment. Arterial wall stresses caused by the interaction of the stent with the vascular wall and possibly stress induced stent strut fracture are two important parameters. The knowledge of these parameters after stent deployment in a patient derived 3D reconstruction of a diseased coronary artery might give insights in the understanding of the process of restenosis.  相似文献   

13.
Angina pectoris is a clinical syndrome of symptoms caused by myocardial ischaemia due to oxygen demand exceeding supply. The most common cause is coronary artery stenosis due to progressive atherosclerotic disease. Angina has a prevalence of approximately 5% and increases with age. Despite improvements in treatment there remains a yearly mortality of 2-3%. A major advance in the treatment of symptomatic angina was the introduction of percutaneous transluminal coronary angioplasty (PTCA). This initial enthusiasm was dampened by significant numbers developing symptomatic restenosis from vascular elastic recoil and neointimal hyperplasia (NI). The widespread introduction of stent deployment following the initial angioplasty reduced the rates of elastic recoil but failed to prevent NI and may actually stimulate it. Currently, there is much interest in mechanisms that alter cell proliferation thereby decreasing NI. Techniques include brachytherapy, photodynamic therapy and drug-eluting stents. Provisional data for these new stents, which slowly release medication that inhibits cell turnover, are very good with few occurrences of restenosis. Results from larger randomised trials are awaited.  相似文献   

14.
The introduction of the drug-eluting stent (DES) proved to be an important step forward in reducing the rates of restenosis and target lesion revascularization after percutaneous coronary intervention (PCI). However, the rapid implementation of DES in standard practice and the expansion of the indications for PCI to high-risk patients and complex lesions also introduced a new problem. DES in-stent restenosis (ISR) occurs in 3 ?? 20% of patients, depending on the patient, lesion characteristics and the DES type. The initial commercially available DES used a stainless steel platform coated with a permanent polymer to provide a controlled release of an anti-restenotic drug. The platform, polymer and drug are all targets for improvement. More advanced metallic and fully biodegradable stent platforms are currently under investigation. The permanent polymer coating, a likely contributor to adverse events, is being superseded by biocompatible and bioabsorbable alternatives. New drugs and drug combinations are also a research goal, as interventional cardiologists and the industry strive towards a safer anti-restenotic DES. This paper reviews the benefits, risks, and current status of biodegradable drug-eluting stents.  相似文献   

15.
The current treatment for coronary restenosis following balloon angioplasty involves the use of a mechanical or a drug-eluting stent. Despite the high usage of commercially-available drug-eluting stents in the cardiac field, there are a number of limitations. This review will present the background ofrestenosis, go briefly into the molecular and cellular mechanisms of restenosis, the use of mechanical stents in coronary restenosis, and will provide an overview of the drugs and genes tested to treat restenosis. The primary focus of this article is to present a comprehensive overview on the use of nanoparticulate delivery systems in the treatment of restenosis both in-vitro and in-vivo. Nanocarriers have been tested in a variety of animal models and in human clinical trials with favorable results. Polymer-based nanoparticles, liposomes, and micelles will be discussed, in addition to the findings presented in the field of cardiovascular drug targeting. Nanocarrier-based delivery presents a viable alternative to the current stent based therapies.  相似文献   

16.
The paper compares the results of different treatment options (balloon angioplasty and restenting) for in-stent restenosis in case of evolving restenosis of drug- and nondrug eluting stents. The investigation enrolled 496 coronary heart disease patients with clinical presentation of angina pectoris and/or signs of myocardial ischemia, as well as hemodynamic restenosis of a previously implanted stent. Of them, 216 and 280 patients had restenosis of previously implanted drug- and nondrug-eluting stents, respectively. In the patients with non-drug-eluting stent restenosis, recurrent angina pectoris and the frequency of repeated restenosis were significantly more frequently observed after balloon dilatation than after drug-eluting stent implantation (28.4 and 10.2%; p < 0.05; 19.9 and 8.7%; p < 0.05). In those with drug-eluting stent restenosis, recurrent angina pectoris and the frequency of repeated restenosis did not differ significantly between balloon dilatation of restenosis and implantation of a second drug-eluting stent.  相似文献   

17.
Following the deployment of a coronary stent and disruption of an atheromatous plaque, the deformation of the arterial wall and the presence of the stent struts create a new fluid dynamic field, which can cause an abnormal biological response. In this study 3D computational models were used to analyze the fluid dynamic disturbances induced by the placement of a stent inside a coronary artery. Stents models were first expanded against a simplified arterial plaque, with a solid mechanics analysis, and then subjected to a fluid flow simulation under pulsatile physiological conditions. Spatial and temporal distribution of arterial wall shear stress (WSS) was investigated after the expansion of stents of different designs and different strut thicknesses. Common oscillatory WSS behavior was detected in all stent models. Comparing stent and vessel wall surfaces, maximum WSS values (in the order of 1Pa) were located on the stent surface area. WSS spatial distribution on the vascular wall surface showed decreasing values from the center of the vessel wall portion delimited by the stent struts to the wall regions close to the struts. The hemodynamic effects induced by two different thickness values for the same stent design were investigated, too, and a reduced extension of low WSS region (<0.5Pa) was observed for the model with a thicker strut.  相似文献   

18.
经皮经腔血管成形术(PTA)已广泛用于外周动脉疾病(PAD)的治疗。然而,该技术存在血管壁弹性回缩和内膜增生等不足。PTA术后植入金属裸支架(BMS)虽然可以减少血管壁弹性回缩,但由此引起的支架内再狭窄(ISR)又成为治疗中的一个突出问题。药物洗脱支架(DES)被用来解决狭窄问题,但晚期支架内血栓形成(LST)、内皮化延迟和必须长期抗血小板治疗等问题也随之而来。在这样的背景下,药物涂层球囊(DCB)获得了快速发展。DCB作为非支架方案,可将所携载的活性药物转移至病变段血管壁,对ISR或原发病变均有较好的治疗效果。本文简要介绍了DCB的发展历史,并通过实验室研究、动物实验和临床试验,从机制上阐述涂层技术、涂层药物、赋形剂等对DCB功效和安全性的影响以及DCB在PAD治疗中的应用进展。  相似文献   

19.
庄瑜  刘俊  肖明第 《生物磁学》2009,(15):2950-2953
冠脉内支架植入是临床上预防PTCA术后再狭窄并发症的有效措施,但金属支架仅在植入早期发生作用,在冠脉内壁修复完成后则成为多余的负担,可能激活血小板及多种凝血因子聚集导致血栓形成及刺激血管壁造成心脏事件及再狭窄的发生。针对上述问题,生物可降解冠状动脉支架的研究得到了相当的发展。本文就可降解支架的发展及现状作一简要综述。  相似文献   

20.
The treatment of coronary bifurcation lesions represents a challenge for the interventional cardiologists due to the lower rate of procedural success and the higher risk of restenosis. The advent of drug-eluting stents (DES) has dramatically reduced restenosis and consequently the request for re-intervention. The aim of the present work is to provide further insight about the effectiveness of DES by means of a computational study that combines virtual stent implantation, fluid dynamics and drug release for different stenting protocols currently used in the treatment of a coronary artery bifurcation. An explicit dynamic finite element model is developed in order to obtain realistic configurations of the implanted devices used to perform fluid dynamics analysis by means of a previously developed finite element method coupling the blood flow and the intramural plasma filtration in rigid arteries. To efficiently model the drug release, a multiscale strategy is adopted, ranging from lumped parameter model accounting for drug release to fully 3-D models for drug transport to the artery. Differences in drug delivery to the artery are evaluated with respect to local drug dosage. This model allowed to compare alternative stenting configurations (namely the Provisional Side Branch, the Culotte and the Inverted Culotte techniques), thus suggesting guidelines in the treatment of coronary bifurcation lesions and addressing clinical issues such as the effectiveness of drug delivery to lesions in the side branch, as well as the influence of incomplete strut apposition and overlapping stents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号