首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A systematic study of the modification of papain (its thiol group protected as a disulphide with mercaptoethanol) by N-bromosuccinimide, showed that 2 molar equiv. modified tryptophan-69 and 4 molar equiv. modified tryptophan-69 and -177. The Michaelis parameters for the catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester by these modified enzymes were determined. The enzymic activity of the modified enzymes was not seriously impaired, but modification of tryptophan-177 raised the apparent pK(a) of the acidic limb of the pH profile by more than 1 pH unit for both k(cat.) and k(cat.)/K(m). The fluorescence spectra (excitation at 288nm) of the modified enzymes showed that tryptophan-69 contributed about 8% to the fluorescence intensity, whereas tryptophan-177 contributed about 46% at neutral pH. However, the contribution of tryptophan-177 was quenched at low pH and its fluorescence intensity showed sigmoidal pH-dependence, with an apparent pK(a) of 4.2. Histidine-159, which is in close contact with tryptophan-177, is considered to be the residue responsible for the fluorescence quenching. When tryptophan-177 was modified, presumably generating a less hydrophobic micro-environment, the apparent pK(a) determined kinetically was raised to about 5.4. By comparing the Michaelis parameters of native papain, papain modified at tryptophan-69 and papain modified at tryptophan-69 and -177 with N-benzyloxycarbonylglycylglycine amide and N-benzyloxycarbonylglycyltryptophan amide, tryptophan-69 and tryptophan-177 were shown to be structural features of the S(2) and S(1)' subsites respectively.  相似文献   

2.
The thiol function of the single cysteinyl residue at the active site of papain was selectively conjugated with either the dinitrophenyl or the fluorescein thiocarbamyl group. Absorption, fluorescence and circular dichroism studies showed that, in both cases, the introduction of the chromophoric moiety caused no significant alterations of the spatial geometry characteristic of native papain. Irradiation of the dinitrophenyl derivative by visible light resulted in the specific photo-oxidation of histidine-159 and trytophan-177, which appeared to be the only potentially photo-oxidizable amino acids adjacent to the labelling group; their distance from the thiol function of cysteine-25 was evaluated to be about 5 Å. These two residues do not appear to make an essential contribution to the structural stability of papain, since the oxidative modification of their side chains induced only limited modifications of the over-all conformation of the protein. On irradiation of the fluorescein-papain complex, the preferential photooxidation of tryptophan-177, histidine-159 and tryptophan-26 took place; in parallel, there was a drastic collapse of the tertiary structure of the protein molecule. It is concluded that tryptophan-26 is oriented in a direction different from that of tryptophan-177 and histidine-159; hence, this residue is probably not directly involved in the catalytic function of the enzyme. However, the intactness of its side chain is critical for maintaining the native three-dimensional structure of papain.  相似文献   

3.
The two forms of chicken cystatin, with different isoelectric points, that have been described previously were indistinguishable in analyses of amino- and carboxy-terminal residues, amino acid composition, and peptide maps. The two forms thus are highly similar and most likely differ only in an amide group or in a small charged substituent. The binding of either cystatin form to highly purified, active papain was accompanied by the same pronounced changes in near-ultraviolet circular dichroism, ultraviolet absorption, and fluorescence emission. These changes were compatible with perturbations of the environment of aromatic residues in one or both proteins of the complex, arising from local interactions or from a conformational change. Modification of the single tryptophan residue of cystatin, at position 104, with N-bromosuccinimide resulted in considerably smaller spectroscopic changes on binding of the inhibitor to papain, indicating that the environment of this residue is affected by the binding. Analogous modification of Trp-69 and Trp-177 of papain markedly affected the fluorescence changes observed on binding of cystatin to the enzyme, similarly suggesting that these two residues of papain are involved in the interaction. The fluorescence increase of papain at alkaline pH, arising from Trp-177 and due to deprotonization of the adjacent His-159, was abolished on binding of cystatin to the enzyme, further supporting the proposal that this region of papain participates in the interaction with the inhibitor. A stoichiometry of binding of either cystatin form to papain of 1:1 and a lower limit for the binding constant of 10(9) M-1 were determined by titrations monitored by either the ultraviolet absorption or fluorescence changes induced by the interaction.  相似文献   

4.
Earlier, we had reported purification of three thiol proteinase inhibitors (TPI-1 of 70 kDa, TPI-3 of 195 kDa and TPI-4 of 497 kDa) from human plasma. In the present study we report that TPI-1 binds to papain in the stoichiometry ratio (E/I) of 1:1 while TPI-3 and TPI-4 bind in the ratio of 1.5:1 and 3.2:1 respectively. The K(m) for papain with BAPNA as substrate and Kcat/K(m) values for TPI-1, TPI-3 and TPI-4 were 2.7 x 10(-6) M, 0.84 nM/sec; 3.2 x 10(-6) M, 0.75 nM/sec; and 3.6 x 10(-6) M, 0.72 nM/sec respectively. The Ki values were found to be 1.48 nM for TPI-1, 0.133 nM for TPI-3 and 0.117 nM for TPI-4. The UV absorption and fluorescence emission spectra study suggest involvement of aromatic residues in the binding process. This study suggests that TPI-4 is the most potent inhibitor of thiol proteinases.  相似文献   

5.
Streptomyces subtilisin inhibitor, a dimeric protein proteinase inhibitor isolated in crystalline form by Murae et al. in 1972, contains three tyrosine and one tryptophan residues per monomer unit and has unusual fluorescence properties. When excited at 280 nm, it shows a characteristic fluorescence spectrum having a peak at 307 nm and a shoulder near 340 nm, a feature which has been recognized only for a very few cases in proteins containing both tryosine and tryptophan residues. When excited at 295 nm, at which tryrosine scarcely absorbs, the inhibitor shows an emission spectrum with a peak at 340 nm characteristic of a tryptophan residue. The emission with a peak at 307 nm is considered to arise from the tryrosine residues. The tryptophan quantum yield of Streptomyces subtilisin inhibitor excited at 295 nm is very small, indicating that the tryptophan florescence is strongly quenched in the native state of the inhibitor. Below pH 4 the peak of the fluorescence spectrum of the inhibitor excited at 280 nm shifts toward 340-350 nm with a concomitant increase in the quantum yield. The structural change induced by low pH seems to release the tryptophan fluorescence from the quenching.  相似文献   

6.
Three thiol proteinases, namely papain, chymopapain and proteinase omega were purified to homogeneity from the latex of Carica papaya L. During the purification procedure, the thiol function of the cysteinyl residues were protected either as mixed disulfides with cysteamine or 2-thiopyridone or as S-sulphenylthiosulfate derivative or after blocking with p-chloromercuribenzoic acid. In marked contrast with earlier publications, chymopapain also was found to be a monothiol proteinase as papain and proteinase omega. The active sites of chymopapain and proteinase omega could not be distinguished from that of papain neither by the analysis of the pH dependence of kcat/Km nor by the examination of the pH dependence of the fluorescence emission spectra.  相似文献   

7.
Nonactivated papain was treated with N-bromosuccinimide at pH 4.75. The N-bromosuccinimide-modified enzyme was characterized by (1) the change in absorbance at 280 nm, (2) amino acid analysis, (3) separate chemical determinations of tryptophan and tyrosine (4) difference spectroscopy, and (5) an N-terminal residue determination. It is concluded that N-bromosuccinimide in sevenfold molar excess oxidizes one tryptophan and two to three tyrosine residues per molecule of nonactivated papain, without causing peptide chain cleavage. Kinetic studies with several substrates and competitive peptide inhibitors were performed at pH6 using the N-bromosuccinimide-modified papain. In addition, the kinetics of the modified enzyme with the substrate alpha-N-benzoyl-L-arginine ethl ester were studied in the region of pH 3.5-9.0. All substrates (and inhibitors) test, with the exception of alpha-N-benzyoyl-L-arginine p-nitroanilide, displayed approximately a two fold decrease in both kcat and Km (or Ki), relative to the native enzyme. It is concluded that the key tryptophan residue which is probably Trp-177.  相似文献   

8.
Intrinsic tryptophans of CRABPI as probes of structure and folding.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native state fluorescence and CD spectra of the predominantly beta-sheet cellular retinoic acid-binding protein I (CRABPI) include contributions from its three tryptophan residues and are influenced by the positions of these residues in the three-dimensional structure. Using a combination of spectroscopic approaches and single Trp-mutants of CRABPI, we have deconvoluted these spectra and uncovered several features that have aided in our analysis of the development of structure in the folding pathway of CRABPI. The emission spectrum of native CRABPI is dominated by Trp 7. Trp 109 is fluorescence-silent due to its interaction with the guanidino group of Arg 111. Although the far-UV CD spectrum of CRABPI is largely determined by the protein's secondary structure, aromatic clustering around Trp 87 and the aromatic-charge interaction between Arg 111 and Trp 109 give rise to a characteristic feature in the CD spectrum at 228 nm. The near-UV CD bands of CRABPI arise largely from additive contributions of the three tryptophan residues. Trp 7 and Trp 87 give a negative CD band at 275 nm. The near-UV CD band from Trp 109 is positive and shifted to longer wavelengths (to 302 nm) due to the charge-aromatic interaction between Arg 111 and Trp 109. Our deconvolution of the equilibrium spectra have been used to interpret kinetic folding experiments monitored by stopped-flow fluorescence. These dynamic experiments suggest the early evolution of a well-populated, hydrophobically collapsed intermediate, which undergoes global rearrangement to form the fully folded structure. The results presented here suggest several additional strategies for dissecting the folding pathway of CRABPI.  相似文献   

9.
Thiol proteases are industrially significant proteins with catalytic efficiency. The effect of low, medium and high molecular-weight poly (ethylene glycol) (PEG- 400, 6000 and 20000) on the stability of thiol proteases (papain, bromelain and chymopapain) has been studied by activity measurements using synthetic substrate. Structural studies performed on papain by far UV circular dichroism spectroscopic measurements indicate that there is loss in secondary structure of the protein in presence of increasing concentration of PEGs. Intrinsic fluorescence measurements lead us to conclude that tryptophan residues of protein encounter non-polar microenvironment in presence of PEG solvent while acrylamide quenching shows greater accessibility of tryptophan residues of papain in presence of PEGs. Extrinsic fluorescence measurements lead us to conclude that PEGs bind to the hydrophobic sites on the protein and thus destabilize it. Thermal denaturation studies show that melting temperature of papain is decreased in presence of PEGs. Possible mechanism of destabilization is discussed next. The results imply that caution must be exercised in the use of PEGs with thiol proteases or hydrophobic proteins in general, for different industrial applications, even at room temperature.  相似文献   

10.
Comparative data on the properties of four thiol proteinase inhibitors, and of four serine proteinase inhibitors (two subtilisin and two trypsin inhibitors) isolated from seeds of Vigna are presented. They were similar in their molecular weights (5000–15,000) and dissociation constants (10?8–10?9m). The range of isoelectric points of the thiol proteinase inhibitors was 6.5 to 10.6, and of the serine proteinase inhibitors was 5.0 to 5.9. The amino acid compositions of one papain isoinhibitor, one of subtilisin, and one of trypsin are presented. Papain inhibitor A1 and subtilisin inhibitor 2a were low in cystine. All of the inhibitors were stable upon heating to 80 °C for 5 min at low pH. The subtilisin inhibitor did not bind to catalytically inactive subtilisin derivatives, whereas the papain inhibitor was stoichiometrically bound to the Hg or thioacetamide derivatives of papain. Incubation of the subtilisin inhibitor with catalytic amounts of subtilisin led to the formation of a modified form with the same inhibitor activity as the native inhibitor but with a different electrophoretic mobility. There was no indication of a similar modification of the papain inhibitor by papain. Separate sites are present on the trypsin-chymotrypsin inhibitors for trypsin and chymotrypsin. The papain inhibitors have the same binding sites for papain and ficin.  相似文献   

11.
Three different forms of thiol proteinase inhibitor (TPI) were isolated from newborn rat epidermis, in which two forms, TPI-1 and TPI-2, inhibited a proteinase activity, but another newly detected one (designated as TPI-3), showed no inhibitory effect. The complete amino acid sequence of TPI-2 and the sequence of the first seventeen residues from the NH2-terminus of TPI-3 were determined. The sequence shows that TPI-2 lacks in the first six (or four) residues from the NH2-terminus of intact inhibitor, TPI-1, whereas TPI-3 is devoid of its fifteen amino acid residues. These results indicate a high and specific susceptibility of TPI to proteolysis. Most significantly, the NH2-terminal region of TPI appears to be essential for inhibition of proteinase activity.  相似文献   

12.
The first studies on a series of the small synthetic thiol proteinase inhibitors, conservative common sequences in several thiol proteinase inhibitors, are described. Among the many interesting findings with synthetic thiol proteinase inhibitors was the observation that the most effective analogue, Z-Gln-Val-Val-Ala-Gly-OMe, whose amino and carboxyl groups were protected with Z and OMe, respectively, showed inhibitory activity on papain and cathepsin B and protected papain from egg cystatin, human low-molecular-weight kininogen and T-kininogen-induced inhibition but not from leupeptin-induced inhibition. Moreover, it was revealed that Z-Gln-Val-Val-OMe was the smallest peptide to exhibit a protective effect on papain.  相似文献   

13.
The Gln-Val-Val-Ala-Gly sequence, which occurs frequently in several natural thiol proteinase inhibitors, and derivatives were synthesized by conventional solution methods and their effect on thiol proteinases were examined. The studies led us to the conclusion that certain of these peptides exhibited a weak inhibitory effect on the thiol proteinase, papain. One of them, Z-Gln-Val-Val-Ala-Gly-OMe, showed a protective effect on papain from natural thiol proteinase inhibitor-induced inactivation. The relationship between structure and activity of these derivatives was studied and certain conclusions were derived on possible mode of action of these inhibitors. From these studies, it was concluded that Z-Gln-Val-Val-OMe was the smallest peptide to exhibit some effect on papain.  相似文献   

14.
The fluorescence properties of proteinase K are described and related to the X-ray model refined at 1.48 A resolution. Upon excitation of proteinase K at 295 nm the fluorescence is determined by the two tryptophan residues, Trp-8 and Trp-212. The tryptophans are partly buried just below the surface of the molecule. Neither Trp is in a highly hydrophobic environment, suggesting that this cannot be the explanation for the fluorescence at 330 nm: formation of exiplexes with adjacent peptide bonds would seem to be the more likely cause. Trp-8 is located in a 'cavity', close to an internal cluster of water molecules. The contribution of Trp-8 to the total indole emission is 60% and that of Trp-212 is 40%. The tryptophan fluorescence quantum yield is constant in the pH range 3-9. The fluorescence spectrum resulting from the simultaneous excitation of the tyrosyl and tryptophyl residues at 280 nm is dominated by the indole fluorophores: 61% of the light absorbed by the tyrosyl side chains is transferred to the two indole rings. Iodide and caesium are not efficient quenchers of the proteinase K tryptophan fluorescence, which is explained by restricted access of the ions to the somewhat buried Trp side chains and by electrostatic repulsion of caesium ions. Acrylamide quenching proceeds via both a dynamic and a static process and the data show homogeneity of the indole fluorescence arising from fluorophores in similar environments. The activation energy for the thermal deactivation of the excited tryptophans is 54 kJ mol-1. This value is substantially higher than those found for other proteinases from microorganisms and arises from the thermostability of proteinase K. Photooxidation of proteinase K in the presence of proflavine follows the kinetics of a first order reaction. The two tryptophans differ in their photoreactivity, Trp-212 being considerably more reactive.  相似文献   

15.
Dynamics studies on tryptophan residues of human alpha 1-acid glycoprotein (orosomucoid) and of 2-p-toluidinylnaphthalene-6-sulfonate bound to the protein are performed. Excitation at the red edge of the absorption spectrum of the tryptophan does not lead to a shift of the fluorescence emission maximum of the fluorophore. This reveals that Trp residues present motions with respect to their microenvironment. This is confirmed by polarization studies as a function of temperature. Excitation at the red edge of the absorption spectrum of TNS leads to an important shift (15 nm) of the fluorescence emission maximum of the probe. This reveals that emission of TNS occurs before relaxation of the amino-acids dipole occurs. Emission from a non-relaxed state means that TNS molecules are bound tightly to the protein, a result confirmed by polarization studies.  相似文献   

16.
Proteinase inhibitors of microbial origin were injected into the uterine horns of mated rats at 14:00 h on Day 5 of pregnancy (spermatozoa in vaginal smear = Day 1), and 5 or 6 h later the embryos were flushed from the horns and examined. Chymostatin and alpha-MAPI, inhibitors of chymotrypsin-like serine proteinase and thiol proteinases, as well as thiolstatin, an inhibitor of thiol proteinases, significantly inhibited embryo growth. The inhibitory activity of alpha-MAPI on embryonic growth was distinctly greater than that of thiolstatin, although the ID50 values of the two inhibitors to papain are similar. Antipain and leupeptin which are inhibitors of trypsin-like and thiol proteinases, and talopeptin, an inhibitor of metal proteinases, significantly interrupted the removal of the zona pellucida from expanding blastocysts. These results suggest that (1) a chymotrypsin-like proteinase seems to be important to the growth of the embryo, (2) a thiol proteinase may participate in embryonic growth, and (3) a trypsin-like proteinase and a metal proteinase are likely to participate in zonalysis.  相似文献   

17.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

18.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

19.
A thiol proteinase inhibitor was purified from rat liver by essentially the same procedure as reported previously (Kominami, E., Wakamatsu, N., and Katunuma, N. (1981) Biochem. Biophys. Res. Commun. 99, 568-575), but without heat treatment. The purified inhibitor appears homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and displayed no multiple forms. The inhibitor has Mr = 12,500 and contains 50.5% of polar amino acid residues, 9.3% aromatic amino acids, and no tryptophan. The presence of 2 half-cystines/molecule and the absence of free thiol groups indicate that the inhibitor possesses one disulfide bridges. The inhibitor inhibits cathepsin H by forming an enzyme-inhibitor complex in a molar ratio of 1:1. It inhibits most thiol proteinases such as cathepsin H, L, B, and C, papain, and ficin, but not calcium-activated neutral proteinase or serine proteinases or carboxyl proteinases. The inhibitor was found in various rat tissues. Immunological diffusion analysis with anti-liver thiol proteinase inhibitor serum indicated that the rat liver inhibitor is immunologically identical with the inhibitors from other rat tissues. On subcellular fractionation of rat liver, the thiol proteinase inhibitor was recovered in the cytosol fraction.  相似文献   

20.
1. Benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) was evaluated as a specific chromophoric oxidizing agent for thiol groups. 2. Aliphatic thiol groups both in low-molecular-weight molecules and in the enzymes papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4) readily reduce benzofuroxan to o-benzoquinone dixime; potential competing reactions of amino groups are negligibly slow. 3. The fate of the thiol depends on its structure: a mechanism is proposed in which the thiol and benzofuroxan form an adduct which, if steric factors permit, reacts with another molecule of thiol to form a disulphide; when the thiol is located in the active site of a thiol proteinase and steric factors preclude enzyme dinner formation, the adduct reacts instead with water or HO- to form a sulphenic acid; attack on the sulphur atom of the adduct by either a sulphur or oxygen nucleophile releases o-benzoquinone dioxine. 4. Benzofuroxan contains n o proton-binding sites with pKa values in the range 3-10 and probably none in the range 0-14; o-benzoquinone dioxine undergoes a one-proton ionization with pKa=6.75.5. o-benzoquinone dioxime absorbs strongly at wavelengths greater than 410nm, where absorption by benzofuroxan, proteins and simple thiol compounds is negligible; 416 nm is an isosbestic point (epsilon 416 = 5110 litre. mol-1-cm-1); epsilon430=3740+[1460/(1+[H+]/Ka)] where pKa=6.75. 6. The possibility of acid-base catalysis of the oxidation by active-centre histidine residues of the thiol proteinases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号