首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast proteins were phosphorylated under two test conditions: white light irradiance alone and white light irradiance with the addition of glucose and glucose oxidase, used to produce an anaerobic medium. The interaction of phospho-LHC II with Photosystem 1 (PS 1) was studied for two types of PS I preparation. Changes in the chlorophyll a/b ratio and the ratio of 650 and 680 nm band intensities (E650/E680) in fluorescence excitation spectra were used in calculating the phospho-LHC II portion which became associated with PS 1. It is shown that the associated portion of phospho-LHC II varies for each of the PS 1 preparations and phosphorylation procedures. Possible conclusions as regards the transfer of various sets of LHC II subpopulations under different phosphorylation procedures and the differences of interaction with PS 1 are discussed.Abbreviations PS 1 Photosystem 1 - PS 2 Photosystem 2 - LHC II light-harvesting chlorophyll a/b protein complex II - Chl chlorophyll - fluorescence quantum yield - f life time of fluorescence at =685 nm - F735 fluorescence band with a maximum at 735 nm - F685 fluorescence band with a maximum at 685 nm - E650/E680 ratio of amplitudes in excitation fluorescence spectrum at 650 and 680 nm  相似文献   

2.
Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (B) are broad (FWHM310 cm-1) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with B. The B hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4–6 and a corresponding mean phonon frequency in the range 35–50 cm-1 together with an inhomogeneous line broadening of100 cm-1 are found to provide good agreement with experiment. The zero-point level of P700* is predicted to lie at710 nm at 1.6K with an absorption maximum at702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.Abbreviations NPHB nonphotochemical hole burning - O.D. optical density - PSBH phonon sideband hole - PS I Photosystem I P680 - P700, P870, P960 the primary electron donors of Photosystem II, Photosystem I, Rhodobacter sphaeroides, Rhodopseudomonas viridis - PED primary electron donor - RC reaction center - ZPH zero-phonon holes  相似文献   

3.
Energy storage measurements by modulated photothermal radiometry (PTR) were carried out on intact leaves to assess the value of the PTR method for photosynthesis research. In particular, correlations to the redox state of P700 under various conditions were examined. PTR monitors modulated light conversion to heat by sensing the resulting modulated infra-red radiation emitted from the leaf. It is, therefore, a complementary method to photoacoustics for estimating energy storage and its time variation, particularly under controlled leaf atmosphere.With modulated light-1 (>690 nm) the energy storage approached zero and P700 was maximally oxidized. When background light of shorter wavelength (<690 nm-light-2) was added, energy storage momentarily increased (a manifestation of Emerson enhancement) while P700 was reduced. The values of both parameters varied as a function of the background light intensity, keeping a mutual linear relationship. Following the initial change, there was a slow reversal transient of P700 oxidation with a parallel decrease in energy storage. Temporal correlation to P700 redox state after dark adaptation was observed also for the energy storage measured in modulated light 2 when combined with background actinic light of medium intensity (about 50 W m2). Under these circumstances P700 was almost totally oxidized initially and then gradually reduced while energy storage was initially low and then increased parallel to P700 reduction.A comparison between the maximum energy storage in modulated light 1, enhanced by background light 2, to the energy storage with short wavelength light (where light tends to be more evenly distributed) indicates a comparable contribution to energy storage from each active photosystem. The above experiments indicate that energy storage contribution from PS I is directly related to the extent of openness of its reaction-centers.While some aspects of the data call for more experimentation, these experiments already establish PTR as a valuable method to monitor photosynthetic energy storage activity in vivo, particularly when used simultaneously with other non-invasive methods.Abbreviations ES energy storage - light 1 or light 2 light of spectral distribution which favors absorption in PS I or PS II, resp. - PTR photothermal radiometry - P700 the primary donor in PS I reaction center  相似文献   

4.
Evidence for the genomic organization of human lambda light chain joining (J) region gene segments is presented. A mouse J probe was used in Southern hybridizations to localize joining region sequences in a cosmid clone containing the genomic cluster of six human lambda constant (C) region gene segments. The results of these hybridizations suggest the presence of at least one J gene segment upstream from each constant region gene segment. The DNA sequences indicate that the human JI, J2, and J3 gene segments have consensus nonamer and heptamer sequences, proposed to be involved in V-J joining, are capable of encoding the known amino acid sequences for the respective J peptides, and have a sequence which could give functional RNA splice site at the end of their coding regions. Our data show that a single functional J is located 1.3 or 1.6 kb upstream of each of the C gene segments known to encode the Mcg, Kern Oz, and KernOz+ isotypes. Therefore, the gene organization of this region of the human lambda locus is J1 CI -J2C2-J3C3. The DNA sequences ofJ 1,J 2, andJ 3 presented in this paper establish that a singleJ gene segment precedes each expressed C gene segment, and support a model for the evolution of the human JC clusters where JICI andJ2C2-J3C3. arose from different ancestral JC units.  相似文献   

5.
Non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves has been analysed by monitoring its relaxation in the dark, by applying saturating pulses of light. At least three kinetically distinct phases to qN recovery are observed, which have previously been identified (Quick and Stitt 1989) as being due to high-energy state quenching (fast), excitation energy redistribution due to a state transition (medium) and photoinhibition (slow). However, measurements of chlorophyll fluorescence at 77 K from leaf extracts show that state transitions only occur in low light conditions, whereas the medium component of qN is very large in high light. The source of that part of the medium component not accounted for by a state transition is discussed.Abbreviations ATP adenosine 5-triphosphate - DCMU 3[3,4-dichlorophenyl]-1,1 dimethylurea - pH trans-thylakoid pH gradient - Fo, Fm room-temperature chlorophyll fluorescence yield with all reaction centres open, closed - Fv variable fluorescence = Fm–Fo - LHC II Light harvesting complex II - PS I, PS II Photosystem I, II - P700, P680 primary donor in photosystem I, II - qP photochemical quenching of variable fluorescence - qN non-photochemical quenching of variable fluorescence - qNe, qNt, qNi non-photochemical quenching due to high energy state, state transition, photoinhibition - qNf, qNm, qNs components of qN relaxing fast, medium, slow - qr quenching of r relative to the dark state - tricine N-tris[hydroxymethyl]methylglycine - r ratio of fluorescence maximum from photosystem II to that from photosystem I at 77 K  相似文献   

6.
The origin of the long-wavelength chlorophyll (Chl) absorption (peak > 680 nm) and fluorescence emission (peak > 685 nm) has been investigated on Scenedesmus mutants (C-2A-series, lacking the ability to synthesize chlorophyll in the dark) grown at 0.3 (LL), 10 (ML) and 240 µE s–1 m–2(HL). LL cells are arrested in an early greening state; consequently, Chl availability determines the phenotype. LL thylakoids are totally lacking long-wavelength Chl; nonetheless, PS I and PS II are fully functional. Gel electrophoresis and Western blots indicate that four out of seven resolved LHC polypeptides seem to require a high Chl availability for assembly of functional chlorophyll-protein complexes. The PS I core-complex of ML and HL thylakoids contains long-wavelength chlorophylls, but in the PS I core-complex of LL thylakoids these pigments are lacking. We conclude that long-wavelength pigments are only present in the PS I core in the case of high Chl availability. The following hypothesis is discussed: Chl availability determines not only the LHC polypeptide pattern, but also the number of bound Chl molecules per individual pigment-protein complex. Chl-binding at non-obligatory, peripheral sites of the pigment-protein complex results in long-wavelength Chl. In the case of low Chl availability, these sites are not occupied and, therefore, the long-wavelength Chl is absent.  相似文献   

7.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

8.
Photosynthetic control describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between pH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP+] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.Abbreviations FBPase Fructose-1,6-bisphosphatase - PS I Photosystem I - PS II Photosystem II - Pi inorganic phosphate - PGA glycerate 3-phosphate - PQ plastoquinone - QA the bound quinone electron acceptor of PS II - qP Photochemical quenching of chlorophyll fluorescence associated with the oxidation of QA - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching associated with the high energy state of the membrane - RuBP ribulose-1,5-bisphosphate - TP triose phosphate - intrinsic quantum yield of PS II - quantum yield of electron transport - quantum yield of CO2 assimilation  相似文献   

9.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

10.
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700+ show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - CA carbonic anhydrase' - Ci inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,6-dimethylbenzoquinone - EZ ethoxyzolamide or 6-ethoxy-2-benzothiazole-sulfonamide - FCCP carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone - F steady-state chlorophyll fluorescence - Fm chlorophyll fluorescence during a saturating light pulse - Fo chlorophyll fluorescence in the dark, prior to illumination by actinic light - MV methyl viologen or 1,1-dimethyl-4,4-bipyridinium dichloride - PCR cycle photosynthetic carbon reduction cycle - PNDA N,N-dimethyl-p-nitrosoaniline - PS 1 the quantum yield of Photosystem 1 - PS 2 the quantum yield of Photosystem 2  相似文献   

11.
Photosystem I particles containing 30–40 chlorophyll a molecules per primary electron donor P700 were subjected to 1.5 ps low density laser flashes at 610 nm resulting in excitation of the antenna chlorophyll a molecules followed by energy transfer to P700 and subsequent oxidation of P700. Absorbance changes were monitored as a function of time with 1.5 ps time resolution. P700 bleaching (decrease in absorbance) occurred within the time resolution of the experiment. This is attributed to the formation of 1P700.* This observation was confirmed by monitoring the rise of a broad absorption band near 810 nm due to chlorophyll a excited singlet state formation. The appearance of the initial bleach at 700 nm was followed by a strong bleaching at 690 nm. The time constant for the appearance of the 690 nm bleach is 13.7±0.8 ps. In the near-infrared region of the spectrum, the 810 nm band (which formed upon the excitation of the photosystem I particles) diminished to about 60% of its original intensity with the same 13.7 ps time constant as the formation of the 690 nm band. The spectral changes are interpreted as due to the formation of the charge separated state P700+—A0 -, where A0 is the primary electron acceptor chlorophyll a molecule.  相似文献   

12.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

13.
The yield of photosynthetic O2 evolution was measured in cultures of Dunaliella C9AA over a range of light intensities, and a range of low temperatures at constant light intensity. Changes in the rate of charge separation at Photosystem I (PS I) and Photosystem II (PS II) were estimated by the parameters PS I and PS II . PS I is calculated on the basis of the proportion of centres in the correct redox state for charge separation to occur, as measured spectrophotometrically. PS II is calculated using chlorophyll fluorescence to estimate the proportion of centres in the correct redox state, and also to estimate limitations in excitation delivery to reaction centres. With both increasing light intensity and decreasing temperature it was found that O2 evolution decreased more than predicted by either PS I or PS II. The results are interpreted as evidence of non-assimilatory electron flow; either linear whole chain, or cyclic around each photosystem.Abbreviations F0 dark level of chlorophyll fluorescence yield (PS II centres open) - Fm maximum level of chlorophyll fluorescence yield (PS II centres closed) - Fv variable fluorescence (Fm-F0) - PS I Photosystem I - PS II Photosystem II - P700 reaction centre chlorophyll(s) of PS I - qN coefficient of non-photochemical quenching of chlorophyll fluorescence - qP coefficient of photochemical quenching of fluorescence yield - qE high-energy-state quenching coefficient - PS I yield of PS I - PS II yield of PS II - S yield of photosynthetic O2 evolution - P intrinsic yield of open PS II centres  相似文献   

14.
The kinetics of the postillumination reduction of P700+ which reflects the rate constant for plastoquinol (PQH2) oxidation was recorded in sunflower leaves at different photon absorption densities (PAD), CO2 and O2 concentrations. The P700 oxidation state was calculated from the leaf transmittance at 830 nm logged at 50 s intervals. The P700+ dark reduction kinetics were fitted with two exponents with time constants of 6.5 and about 45 ms at atmospheric CO2 and O2 concentrations. The time constant of the fast component, which is the major contributor to the linear electron transport rate (ETR), did not change over the range of PADs of 14.5 to 134 nmol cm-2 s-1 in 21% O2, but it increased up to 40 ms under severe limitation of ETR at low O2 and CO2. The acceptor side of Photosystem I (PS I) became reduced in correlation with the downregulation of the PQH2 oxidation rate constant. It is concluded that thylakoid pH-related downregulation of the PQH2 oxidation rate constant (photosynthetic control) is not present under normal atmospheric conditions but appears under severe limitation of the availability of electron acceptors. The measured range of photosynthetic control fits with the maximum variation of ETR under natural stress in C3 plants. Increasing the carboxylase/oxygenase specificity would lead to higher reduction of the PS I acceptor side under stress.Abbreviations Cyt b 6 f cytochrome b 6 f complex - Cw cell-wall CO2 concentration, M - ETR electron transport rate - Fd ferredoxin - FNR ferredoxin-NADP reductase - FRL far-red light - PC plastocyanin - PAD photon absorption density nmol cm-2 s-1 - PFD photon flux density nmol cm-2 s-1 - PS I Photosystem I complex - PQ plastoquinon - PQH2 plastoquinol - PS II Photosystem II complex - P700 Photosystem I donor pigment, reduced - S830 830 nm signal (D830, difference of S830 from the dark level) - WL white light - Yl maximum quantum yield of PS I electron transport, rel. un  相似文献   

15.
The R gene product of bacteriophage lambda is the murein transglycosylase   总被引:14,自引:0,他引:14  
Summary The radioactively labeled proteins synthesised in Escherichia coli minicells infected by bacteriophage R and R + were compared by polyacrylamide gel electrophoresis. R mutants, which have lost the ability to lyse host cells, lack a polypeptide of molecular weight 17.5 kD corresponding to the molecular weight of murein transglycosylase — a bacteriolytic enzyme from lysates which we have described previously. It has been shown by direct comparison using radio-labeled enzyme that transglycosylase comigrates with the R gene product. The enzyme was endetectable in induced cultures of E. coli W3350 su o (cI857 Ram5) and C600 (cI857 acR301), while it was present in a R + mutant lysate. We conclude that the transglycosylase is the R gene product.Abbreviations Muropeptide CA GlcNac-1-4-1,6-anhydro-MurNac-L-Ala-D-Glu-msA2pm-D-Ala - muropeptide CB GlcNac-MurNac-GlcNac-1,6-anhydro-MurNac in which the carboxyl groups of MurNac and 1,6-anhydro-MurNac are substituted by the tetrapeptide L-Ala-D-Glu-msA2pm-D-Ala - muropeptide C3 dimer of the two units GlcNac-MurNac-L-Ala-D-Glu-msA2pm-D-Ala which are connected by D-D peptide bond between D-Ala and msA2pm - GlcNac N-acetyl-D-glucosamine - MurNac N-acetylmuramic acid - msA2pm meso-diaminopimelic acid - rivanol 6,9-diamino-2-ethoxyacridine lactate - SDS sodium dodecyl sulfate  相似文献   

16.
Summary Coliphage 434 tof protein was purified to a substantially pure state from imm 434 cI dv carrier cells. The minimum molecular weight is 7,500±500 as estimated by polyacrylamide gel electrophoresis. The amino acid sequence of the nine NH2-terminal residues was determined, by manual Edman degradation of the intact protein, to be Met-Gln-Thr-Leu-Ser-Glu-Arg-Leu-(Lys)-.The purified protein at low concentrations binds specifically to imm 434dv DNA and at high concentrations also binds to imm 21dv and dv DNA. The curve of the specific binding is of Michaelis type, while that of the nonspecific binding is sigmoidal. The specific binding does not show marked temperature dependency at 4°–37°C. We have analyzed the equilibrium and kinetic data of specific binding. The equilibrium dissociation constant is 1.9x10-11M at 0°C. The association rate constant and the dissociation rate constant are 1.1–2.9x108M-1s-1 and 2.7x10-3s-1, respectively, at 0°C. The half life of the tof protein-operator DNA complex is 260s. These results suggest that the tof protein-operator interaction is much weaker than the interaction between the cI repressor and the operator reported by other workers.  相似文献   

17.
    
Summary The nucleotide sequences involved in the illegitimate recombination of four recombinants between bacteriophage DNA and pBR322 in E. coli (TA6, KA3, TA1R, and KA7) were determined. Each resulted from recombination between regions of homology of 10 to 13 base pairs. The presence of a recA + allele was found to stimulate recombination between DNA and pBR322 approximately 10-fold. TA6, KA3, and KA7 were isolated in the presence of a recA + allele and therefore, may have been generated by the recA recombination system. However, TA1R was isolated in a recA mutant, and was presumably generated by a different recombination system. The possibility that it was generated by DNA gyrase is discussed. Two recombination events were required to form KA7, which may indicate that it also was generated by DNA gyrase.  相似文献   

18.
Colored light modifies the relative concentration of chlorophyll-forms of the diatom Phaeodactylum tricornutum compared to white-light control. No change in the ratio carotenoids/chlorophylls was observed after 4 days exposure to green light (max: 530 nm), blue light (max: 470 nm) or red light ( > 650 nm) of same intensity.However, the absorption spectra were modified, the content in Ca 684, Ca 690, Ca 699 forms increased in red and green light cultures and photosynthetic unit size of PS II decreased by 30% in green and blue light cultures.Fluorescence emission and fluorescence excitation spectra according to the Butler and Kitajima method (1975) were carried out for each culture. Ca 669 form was predominant in the two photosystems. The newly appeared far red forms fluoresce at 715 nm like PS I forms.We conclude that these new forms originated in a rearrangement of PS II forms. They do not transmit excitation energy to reaction center of PS I and are disconnected from the other chlorophyll-forms of the photosynthetic antennae.Abbreviations ABS absorption - Ca chlorophyll-complex - chla chlorophyll a - chl c chlorophyll c - chl t total chlorophylls - D.C.M.U. 3-(3, 4 dichlorophenyl) 1-diméthyl-urea - dv division - F fluorescence - PS I and PS II photosystem I and photosystem II  相似文献   

19.
    
Summary Previous experiments have shown that mutations in the Ai gene can suppress the growth defect of N - phages.Many temperature resistant derivatives of phage tsN 9 have been isolated and among these 5 have been found which are Ai - and have an amber suppressible behaviour.These mutants can help in defining the role of the Ai gene in phage development.  相似文献   

20.
H. Gehring  H. Kasemir  H. Mohr 《Planta》1977,133(3):295-302
Within the temporal pattern of primary differentiation the capacity of chlorophyll — a biosynthesis in the cotyledons ofSinapis alba L. seedlings is controlled by phytochrome (in continuous light) or by releasing the circadian rhythm either with lightdark cycles or by a lightdark transition. The sensor pigment for this process is phytochrome. It is very probable that in continuous light as well as under conditions under which the circadian rhythm plays the major part, the capacity of chlorophyll a biosynthesis is limited by the capacity of the biosynthetic step which produces 5-aminolaevulinate.Abbreviations Chl chlorophyll(ide) a - ALA 5-aminolaevulinate - LA laevulinate - PChl protochlorophyll(ide) - ALAD aminolaevulinate dehydratase (EC4.2.1.24) - [Pfr]/[P10c], photoequilibrium of the phytochrome system at the wavelength - whereby [P10c] [Pr]+[Pfr]. Pfr is the physiologically active, far-red absorbing form of the phytochrome system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号