首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Migratory tendency in insects is a complex trait, composed of a suite of correlated behavioural, physiological, morphological and life history traits. We investigate the genetic and physiological basis of the coevolution of this suite of traits using laboratory lines of the wing dimorphic cricket, Gryllus firmus, selected for increasing and decreasing incidence of macroptery. Selection on wing morphology has produced strong direct responses in proportion macropterous as well as correlated (indirect) responses in wing muscle histolysis, flight propensity and fecundity. We investigate the hypothesis that these responses have been mediated by changes in the metabolism of juvenile hormone (JH) during the final nymphal stadium (the critical period for wing morph determination). Previous studies of Gryllus sp. have established that JH titre in this period is determined primarily by the activity of the degradative enzyme, juvenile hormone esterase (JHE). Assays of JHE activity in the final nymphal stadium of the replicated control and selected lines demonstrate highly significant differences in both mean activity and the probability of macroptery for a given level of activity (i.e., the threshold activity required to induce wing formation). These correlated responses in JH metabolism support the general hypothesis that the correlations among traits determining migratory tendency result at least in part from the common influence of JH during the final nymphal stadium. We discuss these results in the context of the quantitative genetic model for the evolution of polygenic, dichotomous traits (the threshold model), and present four general predictions concerning the coevolution of traits associated with ecological (i.e., trophic, life history, behavioural) dimorphisms.  相似文献   

2.
For decades, Juvenile Hormone (JH) has been a major focus of studies investigating the endocrine regulation of wing‐polymorphism. The most general model postulates a single threshold, above which JH causes the expression of traits that define the short‐winged morph (SW), and below which JH causes the expression of traits that define the long‐winged morph (LW). Early studies in aphids and crickets reported ambiguous results as a result of the small size of aphids or the very low JH titre in nymphal crickets. Detailed studies in wing morphs of adult Gryllus firmus Scudder uncovered an unexpected and novel morph‐specific JH titre circadian cycle (cycling in LW but not in SW) in both the laboratory and field. This finding clearly contradicts the classic model. Morph‐specific daily rhythms in global gene expression are strongly associated with (and are possibly caused by) the morph‐specific JH titre rhythm. Daily rhythms for hormonal traits and gene expression, which are largely ignored in studies of life‐history evolution, may be common and play an important role in adaptation. Juvenile Hormone has likely evolved a specialized within‐morph function in G. firmus, regulating aspects of daily flight in the LW morph, which exhibits circadian flight. Other hormones, such as insulin‐like peptides and ecdysteroids, possibly regulate the expression of chronic (long‐term, noncircadian) differences between LW and SW morphs. Future studies should aim to investigate JH titres in more detail, as well as other hormones, most notably peptides and biogenic amines, which are largely ignored in endocrine studies of wing polymorphism.  相似文献   

3.
A short‐winged morph was recently discovered in the migratory locust, Locusta migratoria. It is different from the normal, long‐winged morph not only in forewing length but also in hind femur length, displaying a dimorphism. To understand the significance of this dimorphism, other morphological characters were compared between the two morphs, and the time of differentiation of wing‐pad length was investigated. Wing weights were heavier in the long‐winged morph than in the short‐winged morph. This result showed that the short‐winged morph is not formed by a failure of wing expansion. No obvious morph‐specific differences were observed in wing venation, but wing allometry studies indicated that the distal areas of the fore‐ and hindwings were disproportionally reduced in the short‐winged morph compared to the long‐winged morph. The morphological differentiation of the wing pad between the two morphs was observed at the penultimate nymphal stage. The flight muscle was well developed in the two morphs, and no sign of flight muscle histolysis was detected in either morph after adult emergence. An analysis of adult body dimensions suggested that the density‐dependent phase shifts known for the long‐winged morph of this locust were also exhibited by the short‐winged morph, demonstrating that these shifts are not specific to the migratory long‐winged morph.  相似文献   

4.
Pea aphids, Acyrthosiphon pisum, reproduce parthenogenetically and are wing-dimorphic such that offspring can develop into winged (alate) or unwinged (apterous) adults. Alate induction is maternal and offspring phenotype is entirely determined by changes in the physiology and environment of the mother. Juvenile hormones (JHs) have been implicated in playing a role in wing differentiation in aphids, however until recently, methods were not available to accurately quantify these insect hormones in small insects such as aphids. Using a novel LC-MS approach we were able to quantify JH III in pea aphids that were either producing a high proportion of winged morphs among their offspring or mainly unwinged offspring. We measured JH III titres by pooling the hemolymph of 12 or fewer individuals (1 μL hemolymph) treated identically. Levels of JH ranged from 30 to 163 pg/μL. While aphids in the two treatments strongly differed in the proportion of winged morphs among their offspring, their JH III titres did not differ significantly. There was also no correlation between JH III titre and the proportion of winged offspring in induced aphids. This supports earlier findings that wing dimorphism in aphids may be regulated by other physiological mechanisms.  相似文献   

5.
Insects display much variation in life histories mediated by juvenile hormone. We focus on the contribution of JH to variations in migratory life histories. In many migrants such as the large milkweed bug and the monarch butterfly, JH directly influences migratory flight and the relation between flight and reproduction (oogenesis-flight syndrome). In the true armyworm, JH regulates interactions among female calling, pheromone production, ovarian development, and migration with varying blends of structurally related forms of JH and JH acid. A role for JH also occurs in wing polymorphisms. Aphids regulate wing production via JH-mediated maternal effects; and in crickets, JH esterase modulates the JH influence on wing form. In addition, JH is implicated in wing muscle histolysis. The comprehensive Fairbairn model for JH regulation of wing polymorphisms in flight behavior predicts that JH action will depend on the mode of genetic control, whether single locus or polygenic. Our own studies of the soapberry bug, Jadera haematoloma, reveal a four-morph wing polymorphism in a species rapidly evolving on a new host plant. There are long- and short-winged forms, and the long-winged form displays three degrees of flight muscle histolysis. The polymorphism is subject to both genetic and environmental variations that are mediated by JH. Application of methoprene increases the frequency of the short-winged forms, but there is both within- and between-population genetic variation and genotype by environment interaction (plasticity) in the response to JH. Arch. Insect Biochem. Physiol. 35:359–373, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Many traits are phenotypically discrete but polygenically determined. Such traits can be understood using the threshold model of quantitative genetics that posits a continuously distributed underlying trait, called the liability, and a threshold of response, individuals above the threshold displaying one morph and individuals below the threshold displaying the alternate morph. For many threshold traits the liability probably consists of a hormone or a suite of hormones. Previous experiments have implicated juvenile hormone esterase (JHE), a degratory enzyme of juvenile hormone, as a physiological determinant of wing dimorphism in the crickets Gryllus rubens and G. firmus. The present study uses a half-sib experiment to measure the heritability of JHE in the last nymphal stadium of G. firmus and its genetic correlation with fecundity, a trait that is itself genetically correlated with wing morph. The phenotypic and genetic parameters are consistent with the hypothesis that JHE is a significant component of the liability. Comparison of sire and dam estimates suggest that nonadditive effects may be important. Two models have been proposed to account for the fitness differences between morphs: the dichotomy model, which assumes that each morph can be characterized by a particular suite of traits, and the continuous model, which assumes that the associated fitness traits are correlated with the liability rather than the morphs themselves. The latter model predicts that the fitness differences will not be constant but change with the morph frequencies. Variation in fecundity and flight muscle histolysis are shown to be more consistent with the continuous model. Data from the present experiment on JHE are inconclusive, but results from a previous selection experiment also suggest that variation in JHE is consistent only with the continuous model.  相似文献   

7.
Discerning the adaptive significance of migratory strategies poses significant challenges, not the least of which is measuring migratory capability in natural populations. We take advantage of a visible migratory dimorphism to study variation in migratory capability in the stream-dwelling water strider, Aquarius remigis. Theory predicts loss of migratory capability in this species because streams have been viewed as stable and persistent habitats. As expected, A. remigis lack wings throughout most of North America. However, Californian populations are noted for unexpectedly high frequencies of winged, migratory morphs. To deduce the adaptive significance of this anomalous regional variation, we compare proportion winged among 37 Californian populations. We discover a strong, positive correlation with altitude, but no correlations with latitude, rainfall or stream size. A common garden experiment reveals that both proportion winged and its reaction norm to temperature differ genetically among populations, and a half-sibling experiment demonstrates that wing morph has high heritability, moderate genetic correlations across environments and a significant genotype by environment interaction. These results support the hypothesis that proportion winged and its reaction norm to temperature have diverged genetically in California. We conclude that high migratory capability is an evolutionary adaptation to the unusual harshness and instability of Californian stream habitats, and particularly to the high elevational gradients and extreme seasonal variation characteristic of montane streams.  相似文献   

8.
Extensive individual variation in spatial behaviour is a common feature among species that exhibit migratory life cycles. Nowhere is this more evident than in salmonid fishes; individual fish may complete their entire life cycle in freshwater streams, others may migrate variable distances at sea and yet others limit their migrations to larger rivers or lakes before returning to freshwater streams to spawn. This review presents evidence that individual variation in migratory behaviour and physiology in salmonid fishes is controlled by developmental thresholds and that part of the variation in proximal traits activating the development of alternative migratory tactics is genetically based. We summarize evidence that alternative migratory tactics co‐exist within populations and that all individuals may potentially adopt any of the alternative phenotypes. Even though intra‐specific genetic divergence of migratory tactics is uncommon, it may occur if female competition for oviposition sites results in spawning segregation of alternative phenotypes. Because of their polygenic nature, alternative migratory tactics are considered as threshold traits. Threshold traits have two characteristics: an underlying 'liability' trait that varies in a continuous fashion, and a threshold value which is responsible for the discreetness observed in phenotypic distribution. We review evidence demonstrating that body size is an adequate proxy for the liability trait controlling the decision to migrate, but that the same phenotypic outcome (anadromy or residency) may be reached by different developmental pathways. The evidence suggesting a significant heritable component in the development of alternative migratory tactics is subsequently reviewed, leading us to conclude that alternative migratory tactics have considerable potential to respond to selection and evolve. We review what is known about the proximal physiological mechanisms mediating the translation of the continuous value of the liability trait into a discontinuous migratory tactic. We conclude by identifying several avenues for future research, including testing the frequency‐dependent selection hypothesis, establishing the relative importance of adaptive phenotypic plasticity in explaining some geographic gradients in migratory behaviour and identifying the physiological and genetic basis of the switching mechanisms responsible for alternative migratory tactics.  相似文献   

9.
1. Trade‐offs play a fundamental role in the evolution of many traits. 2. In wing‐polymorphic field crickets, the long‐winged morph can disperse from unfavourable environments, but has lower reproductive success than the short‐winged morph, because of costs associated with flight capability. 3. However, long‐winged individuals may minimise costs in favourable environments by histolysing their flight muscles and becoming flightless. 4. Few studies have examined how flight‐muscle histolysis affects male signalling and mate attraction. 5. We examined differences in singing activity and song characteristics among the flightless (short‐winged and histolysed long‐winged) and the flight‐capable male morphs, and female preferences for male song, in the sand field cricket. 6. We found: (i) both flightless morphs sang more than the flight‐capable morph, (ii) song characteristics varied among the three morphs, and (iii) females preferred songs characteristic of the long‐winged morphs. 7. Histolysis should increase mating success of long‐winged males because it increases singing activity. 8. Histolysed long‐winged males may have higher mating success than short‐winged males as they sing as frequently but produce more attractive songs. 9. Therefore, plasticity within the long‐winged morph may reduce costs of maturing in environments from which dispersal is not advantageous; non‐flying morphs may be pursuing different reproductive tactics.  相似文献   

10.
Genki Sahashi  Kentaro Morita 《Oikos》2018,127(2):239-251
Partial migration, in which a portion of the population migrates while the rest of the population remains as residents, is a common form of migration. Alternative migratory tactics (AMTs) of partial migration are often determined by polygenic threshold traits. However, the ultimate mechanisms that drive inter‐population variations in threshold traits are not well understood. We present a simple schematic model to explain how the threshold trait changes with fitness consequences under opposing natural and artificial selection forces. We conducted a field test to evaluate the effects of migration difficulty (as a natural selective force) and selective captive breeding (as an artificial selective force) on threshold traits of a partially migratory fish. Male masu salmon Oncorhynchus masou in the Shari River system have AMTs divided into three population categories of hatchery, wild/above the waterfall, and wild/below the waterfall (control). The wild/above the waterfall salmon live in a high‐migration‐cost situation, and the threshold trait changed in a direction that promoted residency. In hatchery salmon, which are produced by migrant‐selective captive breeding, the threshold trait changed in a direction that promoted migration. In contrast, Dolly Varden charr Salvelinus malma displayed only resident tactics, and the threshold trait did not differ between the populations above and below the waterfall, indicating that environment did not explain the variation in the threshold trait. Our results support the model and suggest that opposing natural and artificial selection forces drive variations in the threshold traits and migratory patterns in the studied species. Our conceptual framework for the ultimate mechanism may help to better understand adoption of AMTs and production of diverse intraspecific traits in migratory animals.  相似文献   

11.
The quantitative genetic basis of traits can be determined using a pedigree analysis or a selection experiment. Each approach is valuable and the combined data can contribute more than either method alone. Analysis using both sib analysis and selection is particularly essential when there are likely to be nonlinearities in the functional relationships among traits. A class of traits for which this occurs is that of threshold traits, which are characterized by a dichotomous phenotype that is determined by a threshold of sensitivity and a continuously distributed underlying trait called the liability. In this case, traits that are correlated with the liability may show a nonlinear relationship due to the dichotomy of expression at the phenotypic level. For example, in wing dimorphic insects fecundity of the macropterous (long-winged) females appears in part to be determined by the allocation of resources to the flight muscles, which are almost invariably small or absent in the micropterous (short-winged, flightless) females. Pedigree analysis of the cricket Gryllus firmus has shown that wing morph, fecundity and the trade-off between the two have additive genetic (co)variance. It has also been shown that selection on proportion macroptery produced an asymmetric correlated response of fecundity. The present paper details the results of direct selection on fecundity and the correlated response in proportion macroptery. Selection for increased fecundity resulted in increased fecundity within both wing morphs and a correlated decrease in proportion macroptery. Similarly, selection for decreased fecundity resulted in a decrease within morphs and a correlated increase in the proportion of macropterous females. This provides additional evidence that the trade-off between fecundity and wing morphology has a genetic basis and will thus modulate the evolution of the two traits.  相似文献   

12.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

13.
Migration promotes utilization of seasonal resources, and the distance flown is associated with specific morphologies, yet these relationships can be confounded by environmental factors and phylogeny. Understanding adaptations associated with migration is important: although migration patterns change rapidly, it is unclear whether migratory traits track behavioural shifts. We studied morphometrics of four stonechat populations representing a migratory gradient and raised under common‐garden conditions. With multivariate analyses, we identified wing traits that differed clearly from general size trends, and used phylogenetic comparative methods to test the prediction that these traits correlated with migratory distance in captive and wild populations. Pointedness differed among populations, changed independently from overall body size, and was correlated with migration distance. Migration in stonechats may lead to deviations from allometric size changes, suggesting that birds may adapt morphologically to selection pressures created by their own behaviour in response to changing environmental conditions.  相似文献   

14.
15.
The first day of adult life is the sensitive stage for shifting migrants into the resident morphs of the oriental armyworm (OAW), Mythimna separata (Walker). The juvenile hormone (JH) titer, expression of the allatotropin (AT) gene, and their relationship were investigated in adult female migrants starved in the sensitive stage, to understand the underlying mechanism of changing migrants into resident OAWs. Haemolymph JH titers of the starved female adults were mostly elevated earlier than in controls, although not all differences were statistically significant. JH I titers in the starved moths were significantly higher than those in the controls on 1, 2, and 5 days after treatment (DAT), respectively. JH II titers in the starved moths were significantly higher than the controls through the period tested except on 5 DAT. JH II is the most likely regulator in changing migrants into resident morphs. The relative quantities of AT expression in the starved moths were higher through the period tested except on 5 DAT. AT expression and JH titers appear to be positively correlated, especially for those in earlier days of the adult life. We infer that AT is the important regulator of JH levels. A model for the shifting of migrants into resident morphs in the OAW is proposed.  相似文献   

16.
Summary Populations of the milkweed-oleander aphid,Aphis nerii, were sampled in California, Iowa and Puerto Rico. Among these localities the aphid's host plants differ greatly in permanence. I compared populations for migratory potential, measured as the proportion of winged offspring produced in response to being crowded, and for life history and morphometric traits of the subsequent adult winged aphids. I predicted a negative correlation between degree of host plant permanence and migratory potential. As predicted, aphids from Iowa, where migration on to temporary hosts must occur each year, produce a greater proportion of winged offspring (37.7%) than those from California (25.7%) or Puerto Rico (31.6%) where hosts are more permanent. However, hosts in Puerto Rico appear to be more permanent than those in California, yet the difference between populations for migratory potential was opposite to that predicted. Within California the prediction again held: aphids collected from the most impermanent sites produce the greatest proportion of winged offspring. There were no population differences for any life history or morphometric traits of winged aphids that are important contributors to fitness or migratory ability such as time to reproductive maturity, fecundity or wing length. Nor did any traits covary with migratory potential. Thus, there does not appear to be an association of life history and morphology with migratory potential that could enhance the colonizing ability of migrant aphids. I was unable to detect population differentiation for life history and morphology even though there is ample genetic variation within populations on which selection could act and an absence of constraints arising from genetic correlations that could prevent appropriate evolution of traits within populations. The exploitation of temporary host plants therefore occurs by an increase in the number of colonists produced and not by change in life history or morphology of those colonists.  相似文献   

17.
Wing dimorphism, where some macropterous long‐winged (LW) individuals can fly whereas micropterous short‐winged (SW) individuals cannot, is common in insects and believed to be maintained in part by trade‐offs between flight capability and reproductive traits. In this paper we examine differences in whole‐organism respiration rate between wing morphs of the sand cricket Gryllus firmus. We hypothesized that maintenance of the flight apparatus would result in elevated CO2 respired because of the high metabolic cost of these tissues, which, in turn, constrain resources available for egg production in females. As the trade‐off involves calling behaviour in males, we predicted no equivalent constraint on organ development in this sex. We found female macropters (particularly older crickets) had significantly higher residual respiration rates than micropters. In males, we found only marginal differences between wing morphs. In both sexes there was a highly significant effect of flight muscles status on residual respiration rate, individuals with functional muscles having higher respiration rates. Both female and male macropters had significantly smaller gonads than micropters. Whole‐organism residual respiration rate was negatively correlated with fecundity: macropterous females with high respiration rates had smaller gonads compared with macropterous females with lower respiration rates.  相似文献   

18.
Calliptamus italicus L. is a major migratory pest that often causes serious agricultural losses in the desert/semi‐desert steppe of Central Asia. The present study aims to understand the physiological factors that affect migration of C. italicus by examining the relationships between flight capacity, energy accumulation, ovarian development and Juvenile hormone (JH) titre. The results show that flight capacity decreases with age, being greatest among 2‐day‐old males and lowest among 13‐day‐old locusts. There is no significant correlation between energy accumulation and flight capacity, although JH titre is negatively correlated with flight capacity. Energy accumulation and flight capacity first increases then decreases in 1–13‐day‐old females. Glycogen accumulation is significantly correlated with flight speed, and triglyceride accumulation is significantly correlated with flight distance, duration and speed. Changes in JH titre in 1–13‐day‐old females show double titre peaks, which are negatively correlated with flight capacity. Seven‐day‐old C. italicus have the highest glycogen and triglyceride accumulation, greatest flight capacity, grade II ovarian development and lowest JH titre. By contrast, 13‐day‐old C. italicus have the lowest triglyceride accumulation, lowest flight capacity, grade IV ovarian development and lowest JH titre. Taken together, these findings demonstrate that there is a trade‐off between ovarian development and flight capacity of C. italicus.  相似文献   

19.
麦长管蚜虫龄鉴别特征   总被引:1,自引:0,他引:1  
【目的】为明确麦长管蚜Sitobion avenae (Fabricius)虫龄鉴别特征, 达到快速鉴别的目的。【方法】在成像观察的基础上, 测定无翅型和有翅型个体不同虫龄的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长6项指标。【结果】麦长管蚜不同翅型个体的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长在虫龄间均存在显著差异, 其中体长、 体宽、 头壳宽和触角长在相邻虫龄之间重叠程度大, 后足胫节长的重叠百分比极小或无重叠; 除有翅型个体4龄若蚜和成蚜之间存在13.93%的重叠外, 腹管长在不同翅型的其他相邻虫龄之间重叠百分比均极小或无重叠, 说明后足胫节长和腹管长可作为虫龄鉴定的主要特征。翅、 触角和尾片的其他外部形态特征在虫龄间也存在一定差异: 3-4龄有翅型若蚜和成蚜虫个体前胸的膨大程度及其翅的长度明显大于同一龄期的无翅型个体, 可用于蚜虫翅型的分辨以及3-4龄有翅若蚜和成蚜的鉴别; 麦长管蚜1和2龄若蚜触角均为5节, 3-4龄若蚜和成蚜的触角均为6节; 同时, 除了成蚜具有完整的尾片外, 1-4龄若蚜尾片均不发达, 说明触角的节数和尾片的发达程度可作为麦长管蚜不同龄期形态鉴别的辅助特征。【结论】以腹管和后足胫节作为麦长管蚜虫龄鉴别的主要特征, 配合其他辅助特征, 如翅的大小、 触角的节数以及尾片的发达程度等, 可达到快速鉴别不同翅型不同龄期蚜虫的目的。  相似文献   

20.
Partial migration of some, but not all, members of a population is a common form of migration. We evaluated how migration costs influence which members migrate in 10 populations of two salmonid species. The migratory patterns of both species were evaluated based on the size at maturity for resident males, which is the threshold trait that determines the migratory tactics used within a population. In both species, this size was smaller in males located further from the sea, where migration costs are presumably higher. Moreover, the threshold sizes at maturity in males were correlated between both species. Our results suggest that migration costs are a significant convergent selective force on migratory tactics and life-history traits in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号