首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell transformation assay using BALB/c 3T3 cells, C3H10T1/2 cells and others, can simulate the two-stage carcinogenesis utilized for formation of transformed foci. A sensitive cell transformation assay for tumor initiators as well as promoters has been developed using a v-Ha-ras-transfected BALB/c 3T3 cell line, Bhas 42; these cells are regarded as initiated in the two-stage paradigm of carcinogenesis. To distinguish between initiation and promotion, the initiation assay involves a 2-day treatment of low-density cells, obtained one day after plating, with a test chemical, and the promotion assay involves treatment of near-confluent cells with a test chemical for a period of 12 days (Day 3-14). When Bhas 42 cells were treated with tumor initiators, N-methyl-N'-nitro-N-nitrosoguanidine and 3-methylcholanthrene, transformed foci were induced in the initiation assay but not in the promotion assay. In contrast, tumor promoters, 12-O-tetradecanoylphorbol-13-acetate, lithocholic acid and okadaic acid, gave negative responses in the initiation assay but positive responses in the promotion assay. The results were reproducible with various treatment protocols. Sixteen polycyclic aromatic hydrocarbons were examined using both assays. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene induced focus formation only in the initiation assay. Increase of focus formation was observed in the promotion assay with benzo[e]pyrene, benzo[ghi]perylene, 1-nitropyrene and pyrene. Benz[a]anthracene, benz[b]anthracene, chrysene and perylene showed positive responses in both initiation and promotion assays. Results of initiation and promotion assays of acenaphthylene, anthracene, coronene, 9,10-diphenylanthracene, naphthalene and phenanthrene were negative or equivocal. The present Bhas assays for the detection of either/both initiating and promoting activities of chemicals are sensitive and of high performance compared with other cell transformation assays.  相似文献   

2.
Cell transformation assays using BALB/3T3 cells can mimic the two-stage process of chemical carcinogenesis in experimental animals. A short-term transformation assay using v-Ha-ras-transfected BALB/3T3 cells (Bhas 42 cells), which was developed by Ohmori et al. and modified by Asada et al., has been reported to detect both tumor initiators and promoters as transformation initiators and promoters, respectively, with their differences based on their protocols. In this new short-term assay, we examined mycotoxins derived from Fusarium and related substances for the initiation and promotion activities of the transformation. The tested substances included deoxynivalenol, nivalenol, fusarenon-X, T-2 toxin, fumonisin B(1), fumonisin B(2), zearalenone, alpha-zearalanol, beta-zearalanol, alpha-zearalenol and beta-zearalenol. Fumonisin B(1) and T-2 toxin were positive for promoting activity in the assay. Especially, T-2 toxin was active at concentrations as low as 0.001-0.002microg/mL in the culture medium. From a comparison between the results of this study and published carcinogenicity assay data, it was expected that the Bhas 42 cell transformation assay had a good correlation with the two-stage carcinogenicity tests using experimental animals for estimation of the tumor-promoting activity.  相似文献   

3.
Cell transformation assays using BALB/3T3 cells can mimic the two-stage process of chemical carcinogenesis in experimental animals. A short-term transformation assay using v-Ha-ras-transfected BALB/3T3 cells (Bhas 42 cells), which was developed by Ohmori et al. and modified by Asada et al., has been reported to detect both tumor initiators and promoters as transformation initiators and promoters, respectively, with their differences based on their protocols. In this new short-term assay, we examined mycotoxins derived from Fusarium and related substances for the initiation and promotion activities of the transformation. The tested substances included deoxynivalenol, nivalenol, fusarenon-X, T-2 toxin, fumonisin B1, fumonisin B2, zearalenone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol. Fumonisin B1 and T-2 toxin were positive for promoting activity in the assay. Especially, T-2 toxin was active at concentrations as low as 0.001–0.002 μg/mL in the culture medium. From a comparison between the results of this study and published carcinogenicity assay data, it was expected that the Bhas 42 cell transformation assay had a good correlation with the two-stage carcinogenicity tests using experimental animals for estimation of the tumor-promoting activity.  相似文献   

4.
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.  相似文献   

5.
It has become an important task to develop a simple in vitro method for the detection of non-genotoxic carcinogens, among which tumor promoters are included. Bhas 42 cells are v-Ha-ras-transfected BALB/c 3T3 cells and are regarded as initiated cells in the 2-stage transformation paradigm. We designed a method for detecting tumor promoters by the use of Bhas 42 cells at advanced passage generation. In this method, the cells are cultured in six-well plates for 17 days during which test chemicals are added in the medium for 11 days from days 3 to 14. The end-point of the assay is the induction of transformed foci. When the tumor promoter TPA was used, a significant number of transformed foci were induced concentration-dependently, whereas only a few foci were observed in control cultures. When various chemicals were examined by the method, a reasonable correlation was observed with the reported tumor-promoting ability in animal experiments. We propose that the Bhas 42 cell transformation method is practical and useful for the detection of tumor promoters.  相似文献   

6.
The cell transformation assays (CTAs) have attracted attention within the field of alternative methods due to their potential to reduce the number of animal experiments in the field of carcinogenicity. The CTA using BALB/c 3T3 cells has proved to be able to respond to chemical carcinogens by inducing morphologically transformed foci. Although a considerable amount of data on the performance of the assay has been collected, a formal evaluation focusing particularly on reproducibility, and a standardised protocol were considered important. Therefore the European Centre for the Validation of Alternative Methods (ECVAM) decided to coordinate a prevalidation study of the BALB/c 3T3 CTA. Three different laboratories from Japan and Europe participated. In the study the following modules were assessed stepwise: test definition (Module 1) consisted of the standardisation of the protocol, the selection of the cell lineage, and the preparation of a photo catalogue on the transformed foci. The within-laboratory reproducibility (Module 2) and the transferability (Module 3) were assessed using non-coded and coded 3-methylcholanthrene. Then, five coded chemicals were tested for the assessment of between-laboratory reproducibility (Module 4). All three laboratories obtained positive results with benzo[a]pyrene, phenanthrene and o-toluidine HCl. 2-Acetylaminofluorene was positive in two laboratories and equivocal in one laboratory. Anthracene was negative in all three laboratories. The chemicals except phenanthrene, which is classified by IARC (http://monographs.iarc.fr) as group 3 "not classifiable as to its carcinogenicity to human", were correctly predicted as carcinogens. Further studies on phenanthrene will clarify this discrepancy. Thus, although only a few chemicals were tested, it can be seen that the predictive capacity of the BALB/c 3T3 CTA is satisfactory. On the basis of the outcome of this study, an improved protocol, incorporating some changes related to data interpretation, has been developed. It is recommended that this protocol be used in the future to provide more data that may confirm the robustness of this protocol and the performance of the assay itself. During the study it became clear that selecting the most appropriate concentrations for the transformation assay is crucial.  相似文献   

7.
The induction of transformation in Syrian hamster embryo (SHE) cells is a multifactorial process, in comparison to endpoints induced in in vitro genotoxicity assays such as Ames, mouse lymphoma and cytogenetics [Y. Berwald, L. Sachs, In vitro cell transformation with chemical carcinogens, Nature (London) 200 (1963) 1182-1184]. Furthermore, a number of non-genotoxic carcinogens and promoters such as clofibrate and diethylhexylphthalate, have been positively identified in this assay, while giving false negative results in traditional genotoxicity assays [H. Yamasaki, J. Ashby, M. Bignami, W. Jongen, K. Linnainmaa, R.F. Newbold, G. Nguyen-Ba, S. Parodi, E. Rivedal, D. Schiffmann, J.W.I.M. Simons, P. Vasseur, Nongenotoxic carcinogens: development of detection methods based on mechanisms: a European project, Mutat. Res. 353 (1996) 47-63]. A high concordance between results obtained in this assay when compared with rodent carcinogenesis bioassays has also been noted [R.J. Isfort, G.A. Kerckaert, R.A. LeBoeuf, Comparison of the standard and reduced pH Syrian hamster embryo (SHE) in vitro cell transformation assays to predict the carcinogenic potential of chemicals, Mutat. Res. 356 (1996) 11-63]. Carcinogenesis is known to be a multistage process, with agents potentially acting at each stage. Specifically, mouse skin painting experiments established that tumour induction could be mechanistically divided into two distinct phases, termed initiation and promotion. Initiation, is defined as the stage at which a normal cell is converted to a latent tumour cell, followed by promotion where the latent tumour cell progresses to a tumour [W.F. Friedwald, P. Rous, The initiating and promoting elements in tumour production: analysis of the effects of tar, benzpyrene and methylcholanthrene on rabbit skin, J. Exp. Med. 80 (1944) 101-125]. A protocol for the pH 6.7 SHE transformation assay has been developed which allows separation of cell transformation process into two phases, potentially analogous to initiation and promotion in vivo. This allows chemicals found to be positive in the traditional SHE cell transformation assay to be further classified as initiators or promoters. Following validation with known initiators, benzo(a)pyrene and N-methyl-N'-nitro-N-nitrosoguanidine and promoters, 12-O-tetradecanoyl-phorbol-13-acetate and phenobarbitone, the two-stage model was applied to cigarette smoke particulates which was found to act both at the initiation and promotion stage of cell transformation.  相似文献   

8.
Extensive studies on the safety evaluation of chemicals have indicated that a considerable number of non-genotoxic chemicals are carcinogenic. Tumour promoters are likely to be among these non-genotoxic carcinogens, and their detection is considered to be an important approach to the prevention of cancer. In this review, the results are summarised for in vitro transformation assays involving established cell lines, and for an assay for inhibition of gap junctional intercellular communication for the detection of tumour promoters, which involves V79 cells. Although the number of chemicals examined is still too small to permit a full evaluation of the correlation between in vitro cell transformation and in vivo carcinogenicity, it is clear that the sensitivity of the focus formation assay is very high. In the case of the metabolic cooperation assay, the sensitivity appears to be rather poor, but the assay can be considered to be useful because of its simple procedure and its considerable database. These in vitro assays for tumour promoters are recommended as useful tools for the detection of non-genotoxic carcinogens.  相似文献   

9.
In vitro cell transformation is a process characterized by a series of progressive distinctive events that often emulate manifestations occurring in vivo and which are associated with neoplasia. Attendant cellular and sub-cellular alterations include, among others: cellular immortality, phenotypic changes, aneuploidy, genetic variability, cellular disarray, anchorage-independent growth, and tumorigenicity in vivo. Early chemically induced neoplastic transformation studies involved the use of normal diploid (Syrian) hamster embryo (SHE) cells and monitored the formation of morphologically altered colonies. Later investigations employed primarily two established mouse cell lines, i.e. the BALB/c 3T3 A31 cell line and the C3H 10T 1/2 cell line, and monitored the induction of morphologically aberrant foci. In either case, such transformed cellular clusters (colonies and foci) could induce tumors upon inoculation in vivo. Some subsequent noteworthy advancements using these systems included pH adjustments, metabolic supplementation, amplification of expression of formerly latent transformed foci, concurrent detection of mutagenesis and transformation, and use of a Bhas 42 cell line (v-Ha-ras transfected BALB/c 3T3 cells) to detect both tumor initiators and promoters. Over time, such transformation assay systems have been found useful in academic, industry and regulatory laboratories, generally for research purposes, but also occasionally as screening tools for potential chemical carcinogens. Nevertheless, to date, use of these assays for decision-making purposes in the regulatory arena remains elusive and will require comprehensive validation to gain universal acceptance.  相似文献   

10.
This paper is an extension and update of an earlier review published in this journal (Ashby and Tennant, 1988). A summary of the rodent carcinogenicity bioassay data on a further 42 chemicals tested by the U.S. National Toxicology Program (NTP) is presented. An evaluation of each chemical for structural alerts to DNA-reactivity is also provided, together with a summary of its mutagenicity to Salmonella. The 42 chemicals were numbered and evaluated as an extension of the earlier analysis of 222 NTP chemicals. The activity patterns and conclusions derived from the earlier study remain unchanged for the larger group of 264 chemicals. Based on the extended database of 264 NTP chemicals, the sensitivity of the Salmonella assay for rodent carcinogens is 58% and the specificity for the non-carcinogens is 73%. A total of 32 chemicals were defined as equivocal for carcinogenicity and, of these, 11 (34%) are mutagenic to Salmonella. An evaluation is made of instances where predictions of carcinogenicity, based on structural alerts, disagree with the Salmonella mutagenicity result (12% of the database). The majority of the disagreements are for structural alerts on non-mutagens, and that places these alerts as a sensitive primary screen with a specificity lower than that of the Salmonella assay. That analysis indicates some need for assays complementary to the Salmonella test when screening for potential genotoxic carcinogens. It also reveals that the correlation between structural alerts and mutagenicity to Salmonella is probably greater than 90%. Chemicals predicted to show Michael-type alkylating activity (i.e., CH2 = CHX; where X = an electron-withdrawing group, e.g. acrylamide) have been confirmed as a structural alert, and the halomethanes (624 are possible) have been classified as structurally-alerting. To this end an extended carcinogen-alert model structure is presented. Among the 138 NTP carcinogens now reviewed, 45 (33%) are non-mutagenic to Salmonella and possess a chemical structure that does not alert to DNA-reactivity. These carcinogens therefore either illustrate the need for complementary genetic screening tests to the Salmonella assay, or they represent the group of non-genotoxic carcinogens referred to most specifically by Weisburger and Williams (1981); the latter concept is favoured.  相似文献   

11.
Published literature on the Chinese hamster ovary cell/hypoxanthine guanine phosphoribosyl transferase (CHO/HGPRT) assay from mid-1979 through June 1986 was reviewed and evaluated. Data from the papers considered acceptable include test results on 121 chemicals belonging to 25 chemical classes. A total of 87 chemicals were evaluated positive, 3 negative, and 31 inconclusive. Mutagenicity data on 49 of the 121 chemicals evaluated could also be compared with in vivo animal carcinogenicity data. 40 of the 43 reported animal carcinogens were considered mutagenic. Caprolactam, the only definitive noncarcinogen in the group of 49, was not mutagenic. The CHO/HGPRT assay was concluded to be an appropriate assay system for use in the screening of chemicals for genotoxicity.  相似文献   

12.
An analysis is presented in which are evaluated correlations among chemical structure, mutagenicity to Salmonella, and carcinogenicity to rats and mice among 301 chemicals tested by the U.S. NTP. Overall, there was a high correlation between structural alerts to DNA reactivity and mutagenicity, but the correlation of either property with carcinogenicity was low. If rodent carcinogenicity is regarded as a singular property of chemicals, then neither structural alerts nor mutagenicity to Salmonella are effective in its prediction. Given this, the database was fragmented and new correlations sought between the derived sub-groups. First, the 301 chemicals were segregated into six broad chemical groupings. Second, the rodent cancer data were partially segregated by target tissue. Using the previously assigned structural alerts to DNA reactivity (electrophilicity), the chemicals were split into 154 alerting chemicals and 147 non-alerting chemicals. The alerting chemicals were split into three chemical groups; aromatic amino/nitro-types, alkylating agents and miscellaneous structurally-alerting groups. The non-alerting chemicals were subjectively split into three broad categories; non-alerting, non-alerting containing a non-reactive halogen group, and non-alerting chemical with minor concerns about a possible structural alert. The tumor data for all 301 chemicals are re-presented according to these six chemical groupings. The most significant findings to emerge from comparisons among these six groups of chemicals were as follows: (a) Most of the rodent carcinogens, including most of the 2-species and/or multiple site carcinogens, were among the structurally alerting chemicals. (b) Most of the structurally alerting chemicals were mutagenic; 84% of the carcinogens and 66% of the non-carcinogens. 100% of the 33 aromatic amino/nitro-type 2-species carcinogens were mutagenic. Thus, for structurally alerting chemicals, the Salmonella assay showed high sensitivity and low specificity (0.84 and 0.33, respectively). (c) Among the 147 non-alerting chemicals less than 5% were mutagenic, whether they were carcinogens or non-carcinogens (sensitivity 0.04).  相似文献   

13.
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.  相似文献   

14.
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.  相似文献   

15.
There has been a current resurgence of interest in the use of cell transformation for predicting carcinogenicity, which is based mainly on rodent carcinogenicity data. In view of this renewed interest, this paper critically reviews the published literature concerning the ability of the available assays to detect IARC Group 1 agents (known human carcinogens) and Group 2A agents (probable human carcinogens). The predictivity of the available assays for human and rodent non-genotoxic carcinogens (NGCs), in comparison with standard and supplementary in vitro and in vivo genotoxicity tests, is also discussed. The principal finding is that a surprising number of human carcinogens have not been tested for cell transformation across the three main assays (SHE, Balb/c 3T3 and C3H10T1/2), confounding comparative assessment of these methods for detecting human carcinogens. This issue is not being addressed in the ongoing validation studies for the first two of these assays, despite the lack of any serious logistical issues associated with the use of most of these chemicals. In addition, there seem to be no plans for using exogenous bio-transformation systems for the metabolic activation of pro-carcinogens, as recommended in an ECVAM workshop held in 1999. To address these important issues, it is strongly recommended that consideration be given to the inclusion of more human carcinogens and an exogenous source of xenobiotic metabolism, such as an S9 fraction, in ongoing and future validation studies. While cell transformation systems detect a high level of NGCs, it is considered premature to rely only on this endpoint for screening for such chemicals, as recently suggested. This is particularly important, in view of the fact that there is still doubt as to the relevance of morphological transformation to tumorigenesis in vivo, and the wide diversity of potential mechanisms by which NGCs are known to act. Recent progress with regard to increasing the objectivity of scoring the transformed phenotype, and prospects for developing human cell-based transformation assays, are reviewed.  相似文献   

16.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is an important in vitro method that is highly predictive of rodent carcinogenicity. It is a key method for reducing animal usage for carcinogenicity prediction. The SHE assay has been used for many years primarily to investigate and identify potential rodent carcinogens thereby reducing the number of 2-year bioassays performed in rodents. As for other assays with a long history of use, the SHE CTA has not undergone formal validation. To address this, the European Centre for the Validation of Alternative Methods (ECVAM) coordinated a prevalidation study. The aim of this study was to evaluate the within-laboratory reproducibility, test method transferability, and between-laboratory reproducibility and to develop a standardised state-of-the-art protocol for the SHE CTA at pH 6.7. Formal ECVAM principles for criteria on reproducibility (including the within-laboratory reproducibility, the transferability and the between-laboratories reproducibility) were applied. In addition to the assessment of reproducibility, this study helped define a standard protocol for use in developing an Organisation for Economic Co-operation and Development (OECD) test guideline for the SHE CTA. Six compounds were evaluated in this study: benzo(a)pyrene, 3-methylcholanthrene, o-toluidine HCl, 2,4-diaminotoluene, phthalic anhydride and anthracene. Results of this study demonstrate that a protocol is available that is transferable between laboratories, and that the SHE CTA at pH 6.7 is reproducible within- and between-laboratories.  相似文献   

17.
The European Centre for the Validation of Alternative Methods (ECVAM) has organised an interlaboratory prevalidation study on the Syrian hamster embryo (SHE) cell transformation assay (CTA) at pH 7.0 for the detection of rodent carcinogens. The SHE CTA at pH 7.0 has been evaluated for its within-laboratory reproducibility, transferability and between-laboratory reproducibility. Four laboratories using the same basic protocol with minor modifications participated in this study and tested a series of six coded-chemicals: four rodent carcinogens (benzo(a)pyrene, 3-methylcholanthrene, 2,4-diaminotoluene and o-toluidine HCl) and two non-carcinogens (anthracene and phthalic anhydride). All the laboratories found the expected results with coded chemicals except for phthalic anhydride which resulted in a different call in only one laboratory. Based on the outcome of this study, it can be concluded that a standardised protocol is available that should be the basis for future use. This protocol and the assay system itself are transferable between laboratories and the SHE CTA at pH 7.0 is reproducible within- and between-laboratories.  相似文献   

18.
Initial studies performed in our laboratory indicated that early passage Syrian hamster embryo (SHE) cells exhibit optimal clonal proliferation when cultured in medium with a sodium bicarbonate concentration of 8.9 mM and pH of 6.70 instead of 44 mM and pH 7.35 as used previously by others. Subsequent studies indicated that morphological transformation frequency induced by benzo[a]pyrene (BP) was also enhanced at pH 6.70 compared to 7.35 and the level of enhancement was affected by cell density and duration of culture. With optimal conditions identified, the carcinogens BP, 3-methylcholanthrene, N-methyl-N'-nitro-N-nitrosoguanidine, 2-acetylaminofluorene and the non-carcinogen anthracene were tested at pH 6.70 and 7.35 in our laboratory and at Microbiological Assoc. Inc. under code. Additionally, the non-carcinogens 4-acetylaminofluorene, and caprolactam were tested in our laboratory. Results from these studies indicate that all carcinogens tested caused a significant increase in morphological transformation frequency compared to controls at pH 6.70. In contrast, only BP caused a significant increase in the morphological transformation frequency at pH 7.35. The non-carcinogens did not significantly increase the morphological transformation frequency compared to controls. Interlaboratory comparisons were in qualitative agreement despite the fact that different lots of serum and hamster cell isolates were used by the two laboratories. However, different dose-response curves for the various chemicals were observed between the two labs. It was also demonstrated that the enhanced morphological transformation frequency is not due to a decrease in culture medium osmolality or Na concentration, a condition which accompanies media with a reduced bicarbonate concentration and pH. These results demonstrate that the chemicals tested, low pH transformation of SHE cells agrees with carcinogenic potential and that assay variability is minimized. The implications of these results regarding use of the SHE cell assay as a short-term test for predicting the carcinogenic potential of chemicals are discussed.  相似文献   

19.
The introduction of a polycyclic hydrocarbon such as benzo(alpha)pyrene (BP) into normal golden hamster embryo cell cultures results, in addition to cytotoxicity, in malignant cell transformation. Studies on the effect of different doses of BP on the normal cells showed that the frequency of transformed colonies was directly related to the dose of the carcinogen. Analysis of this dose-response curve suggests a one-event ("one-hit") response for transformation by this carcinogen. The one-event response for transformation by carcinogenic polycyclic hydrocarbons and the fact that these carcinogens bind to DNA in susceptible cells suggests that transformation can involve a single alteration in the genetic constitution of the treated cells. Carcinogens may, therefore, produce somatic mutations, some of which may involve the genes that control malignancy. Recently, considerable progress has been made in developing models for the study of chemical mutagenesis in mammalian cells. Using resistance to 8-azaguanine as a marker, positive correlations between mutagenicity and transformation were obtained with chemically reactive carcinogens such as N-acetoxy-N-2-fluorenyl-acetamide, N-methyl-N'-nitro-N-nitrosoguanidine and K-region epoxides of polycyclic hydrocarbons. However, no such correlations were obtained with the carcinogenic polycyclic hydrocarbons themselves, since the cell lines used in chemical mutagenesis do not metabolize these carcinogens. In order to obtain better correlations, we have developed a cell-mediated mutagenic assay with carcinogenic hydrocarbons in which Chinese hamster cells, which are susceptible for mutagenesis, were co-cultivated with lethally irradiated rodent cells that can metabolize these compounds. Using this cell mediated assay, we obtained mutagenesis with the carcinogenic hydrocarbons 7,12-dimethylbenz(alpha)anthracene (DMBA), BP, 3-methylcholanthrene and 7-methylbenz(alpha)anthracene; the most potent carcinogen, DMBA, gave the highest frequency of mutations. The polycyclic hydrocarbons, pyrene and benz(alpha)anthracene, which are not carcinogenic were also not mutagenic. We have therefore demonstrated a relationship between the carcinogenecity of polycyclic hydrocarbons and their mutagenicity in mammalian cells, without having to isolate their reative metabolic intermediates. It should be possible to use in this system human cells from different organs and individuals to screen for environmental chemicals hazardous to humans which have to be metabolically activated.  相似文献   

20.
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号